【總結】第八節(jié)正、余弦定理的應用基礎梳理解三角形(1)解三角形:__________________________________________________________________________________________________________________________________________________.
2024-11-12 16:42
【總結】陜西省咸陽市涇陽縣云陽中學高中數(shù)學北師大版必修5【學習目標】1.能根據(jù)正弦定理判斷三角形的形狀2.會對正弦定理與三角形外接圓半徑的關系簡單進行應用3.能對三角形面積定理進行應用【學習重點】正弦定理與三角形外接圓半徑的關系簡單進行應用三角形面積定理的應用【使用說明】[A
2024-11-27 22:09
【總結】2020年12月24日星期四首頁§余弦定理2020年12月24日星期四引入2sinsinsin(abcRABCRABC????為外 接圓的半徑)在一個三角形中,各邊的長和它所對角的正弦的比相等。即:ABCac
2024-11-17 17:33
【總結】課題:正弦定理、余弦定理綜合運用(二)?課題:正弦定理、余弦定理綜合運用(二)知識目標:1、三角形形狀的判斷依據(jù);?2、利用正弦、余弦定理進行邊角互換。能力目標:1、進一步熟悉正、余弦定理;2、
2024-11-09 12:40
【總結】ABC中,a2b2+c2,則A的取值范圍是()A.90°A180°B.45°A90°C.60°A90°D.0°A90°解析:∵a2=b2+c2-
2024-12-03 00:11
【總結】北師大版高中數(shù)學必修五正弦定理、余弦定理的應用遼寧省北票市保國學校叢日艷教學目的:1進一步熟悉正、余弦定理內(nèi)容;2能夠應用正、余弦定理進行邊角關系的相互轉化;3能夠利用正、余弦定理判斷三角形的形狀;4能夠利用正、余弦定理證明三角形中的三角恒等式教學重點:利用正、余弦定理進行邊角互換時的轉化方向教學難點:三角函數(shù)公式變形與正、余弦定理的聯(lián)系
2025-06-28 04:35
【總結】§.余弦定理(1)一、問題提出?在三角形中,已知兩角及一邊,或已知兩邊及其中一邊的對角,可以利用正弦定理求其他的邊和角,那么,已知兩邊及其夾角,怎么求出此角的對邊呢?已知三邊,又怎么求出它的三個角呢?二、分析理解22222cos2cos2))((cAbcbABAABA
2024-11-17 23:32
【總結】正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理回憶一下直角三角形的邊角關系?ABCcba222cba??Acasin?Bcbsin?Abatan????90BA兩等式間有聯(lián)系嗎?cBbAa??si
2024-11-17 06:14
【總結】§.余弦定理(2)知識改變命運,勤奮成就未來.三角形任何一邊的平方等于其他兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍。Abccbacos2222???Baccabcos2222???Cabbaccos2222???余弦定理22222
2024-11-18 08:48
【總結】余弦定理復習回顧RCcBbAa2sinsinsin???baCAB(1)已知三角形的兩角和任一邊,求其它兩邊和另一角;(2)已知三角形的兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其它的邊和角).第二種情況若知道的是大邊的對角,只有唯一的一組解;若給出的是小邊的對角,則結
【總結】BCA創(chuàng)設情境BABCAC??.||,||ACbBCaBA,求夾角是,如果???數(shù)學理論CabbacBacacbAbccbacos2cos2cos2222222222?????????數(shù)學理論.2cos,2cos,2cos22222
【總結】正弦定理和余弦定理的應用知識點:1、正弦定理:.2、正弦定理的變形公式:①,,;②,,;③;④.3、三角形面積公式:.4、余弦定理:在中,有,,.5、余弦定理的推論:,,.6、設、、是的角、、的對邊,則:①若,則;②若,則;③若,則.典型例題:解:,由正弦定理得答:(略)1、如圖,設A,B兩點在河的兩岸,一測量者在A點的同側,在A所在的河岸邊選
2025-06-28 05:52
【總結】正弦定理作業(yè)1、在ABC?中,若Abasin23?,則B等于()A.?30B.?60C.?30或?150D.?60或?120[2、在ABC?中,已知?45,1,2???Bcb,則a等于()A.226?B.
2024-11-30 14:39
【總結】第2課時余弦定理知能目標解讀,掌握余弦定理,理解用數(shù)量積推導余弦定理的過程,并體會向量在解決三角形的度量問題時的作用..,并會用余弦定理解決“已知三邊求三角形的三角”及“已知兩邊及其夾角求三角形中其他的邊和角”等問題..重點難點點撥重點:余弦定理的證明及其應用.難點:處理三角形問題恰當?shù)剡x擇正弦定理
2024-11-19 19:36
【總結】1.2余弦定理△ABC中,已知邊a,b及∠C.1.若∠C=90°,則c2=a2+b2.2.若∠C是銳角,如左下圖,作AD⊥BC于點D,于是AD=b·sinC,CD=b·cos_C,BD=a-bcos_C.3.若∠C為鈍角,如右上圖,作
2024-12-09 03:46