【總結(jié)】......平面向量基本定理及坐標(biāo)表示1.平面向量基本定理如果e1、e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量a,存在唯一一對實數(shù)λ1、λ2,使a=λ1e1+λ2e2,其中,不共線的向量e1、e2叫做表示這一平面內(nèi)所有
2025-06-30 20:18
【總結(jié)】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2024-11-12 19:04
【總結(jié)】平面向量基本定理平面向量的基本定理設(shè)、是同一平面內(nèi)的兩個不共1e2e線的向量,a是這一平面內(nèi)的任一向量,1e2e我們研究a與、之間的關(guān)系。1ea2e研究OC=OM+ON=2?1?OA+OB1?1e2e2?即a=+
2024-10-19 17:16
2024-11-12 17:12
【總結(jié)】學(xué)大教育個性化教學(xué)教案BeijingXueDaCenturyEducationTechnologyLtd.個性化教學(xué)輔導(dǎo)教案學(xué)科:數(shù)學(xué)任課教師:劉興峰授課日期:年月日(星期)姓名任泳琪年級高一性別女授課時間段總課時第課
2025-08-04 16:20
【總結(jié)】沈陽市第三十五中學(xué)生本課堂導(dǎo)學(xué)案課題:平面向量基本定理科目:數(shù)學(xué)設(shè)計人:秦穎備課組長:陳艷萍年級主任:張寶東沈陽市第三十五中學(xué)生本課堂導(dǎo)學(xué)案學(xué)習(xí)目標(biāo):(1)理解平面里的任何一個向量都可以用兩個不共線的向量來表示,能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表達(dá)。(2)培養(yǎng)獨立思考及勇于探求的精神;
2025-08-17 14:03
【總結(jié)】應(yīng)用平面向量基本定理解題舉例秭歸一中數(shù)學(xué)組周宗圣向量融數(shù)、形于一體,具有幾何與代數(shù)形式的雙重身份,因此向量的引入與應(yīng)用極大地拓寬了解題的思想與方法。其解題方法歸納如下::將題目已知條件轉(zhuǎn)化成形式,其中、不共線,則.例1:設(shè)、、為非零向量,其中任意兩個向量不共線,已知+與共線,且+與共線,試問與+是否共線?并證明你的結(jié)論.證明:∵與共線,∴存在唯一實數(shù),使得=
2025-03-26 04:29
【總結(jié)】第五單元平面向量與復(fù)數(shù)第一節(jié)平面向量的概念及其線性運算基礎(chǔ)梳理名稱定義表示法向量既有又有的量;向量的大小叫做向量的(或),向量_______模_________零向量長度為的向量;其方向是任意的
2024-11-12 18:19
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強化雙基系列課件25《平面向量及向量的基本運算》1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:。向量的大小即向量的模(長度),記作||。②零向量:長度為0的向量,記為,其方向
2024-11-10 00:27
【總結(jié)】2022屆高考數(shù)學(xué)復(fù)習(xí)強化雙基系列課件25《平面向量及向量的基本運算》1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:。向量的大小即向量的模(長度),記作||。②零向量:長度為0的向量,記為,其方向
2025-07-25 15:40
【總結(jié)】一、教學(xué)目標(biāo)1.理解和掌握平面向量的分解定理;2.掌握平面內(nèi)任一向量都可以用兩個不平行向量來表示;掌握基的概念,并能夠用基表示平面內(nèi)的向量;3.根據(jù)學(xué)生已有的物理知識經(jīng)驗,在熟悉的問題情景中,體會研究向量分解的必要性。4.經(jīng)歷平面向量分解定理的探求高考資源網(wǎng)過程,培養(yǎng)觀察能力、抽象概括能力、體會化歸思想。二、教學(xué)重點及難點:平面向量分解定理的發(fā)現(xiàn)和形成過程;分
2025-06-07 23:34
【總結(jié)】 平面向量基本定理[學(xué)習(xí)目標(biāo)] ,,當(dāng)一組基底選定后,.知識點一 平面向量基本定理(1)定理:如果e1,e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2.(2)基底:把不共線的向量e1,e2叫做表示這一平面內(nèi)所有向量的一組基底.思考 如圖所示,e1,e2是兩個不共線的向量,試用e1,e2表示向量,,,,
2025-06-19 18:18
【總結(jié)】第一篇:平面向量基本定理及相關(guān)練習(xí)(含答案) 平面向量2預(yù)習(xí): :已知非零向量a和b,作OA=a,OB=b,則DAOB=q(0£q£p)叫做向量a和b的夾角。 (1)q=0時,a和b同向;(2)...
2024-11-15 04:03
【總結(jié)】平面向量基本定理常用題型歸納何樹衡劉建一平面向量基本定理:如果是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且僅有一對實數(shù)使得=平面向量基本定理是正交分解和坐標(biāo)表示的基礎(chǔ),它為“數(shù)”和“形”搭起了橋梁,,認(rèn)為大致分為以下題型:一、基本題型隨處可見例1:在直角坐標(biāo)平面上,已知O是原點,,若,求實數(shù)x,y的值解: ∴ 即x為-3,y為3
2025-03-25 01:38
【總結(jié)】正交分解問題?問題,理論上,一條直線由該直線上的一個向量確定了,那么平面呢?設(shè)、是同一平面內(nèi)的兩個不共1e2e線的向量,a是這一平面內(nèi)的任一向量,1e2e我們研究a與、之間的關(guān)系。1ea2e物理學(xué)中的力的分解模型OC=OM+ON=
2025-07-23 03:15