【總結】平面向量基本定理平面向量的基本定理設、是同一平面內(nèi)的兩個不共1e2e線的向量,a是這一平面內(nèi)的任一向量,1e2e我們研究a與、之間的關系。1ea2e研究OC=OM+ON=2?1?OA+OB1?1e2e2?即a=+
2024-10-19 17:16
【總結】 平面向量的概念及其線性運算1.向量的有關概念名稱定義備注平行向量方向相同或相反的非零向量0與任一向量平行或共線共線向量方向相同或相反的非零向量又叫做共線向量相等向量長度相等且方向相同的向量兩向量只有相等或不等,不能比較大小相反向量長度相等且方向相反的向量0的相反向量為0向量運算定 義法則(或幾何意義)運算律
2025-07-20 14:28
【總結】平面向量基本定理及坐標運算1.選擇題1.若向量=(1,2),=(3,4),則=()A(4,6)B(-4,-6)C(-2,-2)D(2,2)2.若向量a=(x-2,3)與向量b=(1,y+2)相等,則 ()A.x=1,y=3 B.x=3,y=1 C.x=1,y=-5 D.x=5,y=-13.下列
2025-03-25 01:22
【總結】湖南長郡衛(wèi)星遠程學校平面向量的坐標運算平面向量的坐標運算主講:王毅湖南長郡衛(wèi)星遠程學校提問:湖南長郡衛(wèi)星遠程學校(1)平面向量的基本定理的內(nèi)容是什么?什么叫做平面向量的基底?提問:湖南長郡衛(wèi)星遠程學校(1)平面向量的基本定理的內(nèi)容是什
2024-11-09 02:25
【總結】第二節(jié)平面向量的基本定理及坐標表示基礎梳理(1)平面向量基本定理定理:如果e1,e2是同一平面內(nèi)的兩個的向量,那么對于這一平面內(nèi)的任意向量a,一對實數(shù)λ1,λ2,使a=.其中
2024-11-12 16:44
【總結】應用四點向量定理與斯坦納定理解題浙江省桐鄉(xiāng)第二中學范廣法314511sdhzmdq@一、四點向量定理與斯坦納定理對向量,有,從而,,.這樣數(shù)量積僅用四邊形ABCD的四條邊AB,BC,CD,AD的長度表示,向量夾角余弦值這類式子不再充斥在表達式中.文[1]將“”稱之為四點向量定理.考慮到ABCD四點的順序,,則,文[2]稱“”為斯坦納定理.二、定理的
2025-03-25 01:38
【總結】 平面向量常見題型與解題指導一、考點回顧1、本章框圖2、高考要求1、理解向量的概念,掌握向量的幾何表示,了解共線向量的概念。2、掌握向量的加法和減法的運算法則及運算律。3、掌握實數(shù)與向量的積的運算法則及運算律,理解兩個向量共線的充要條件。4、了解平面向量基本定理,理解平面向量的坐標的概念,掌握平面向量的坐標運算。5、掌握平面向量的數(shù)量積及其幾何意義,了解用平面向量的數(shù)量
2025-03-24 05:55
【總結】第2節(jié)平面向量基本定理及其坐標表示(對應學生用書第61~62頁)1.向量的夾角(1)定義:已知兩個非零向量a和b,如圖,作OA―→=a,OB―→=b,則∠AOB=θ叫做向量a與b的夾角,也可記作〈a,b〉=θ.(2)范圍:向量夾角θ的范圍是[0,π],a與b同向時,夾角θ
2024-11-12 01:35
【總結】第二節(jié)平面向量基本定理及坐標表示分析不易直接用c,d表示,所以可以先由聯(lián)合表示,再進行向量的線性運算,從方程中解出??DABA,??DABA,??NAMA,??DABA,解
【總結】......平面向量的實際背景及基本概念:我們把既有大小又有方向的量叫向量。:只有大小沒有方向的量叫做數(shù)量。數(shù)量與向量的區(qū)別:數(shù)量只有大小,是一個代數(shù)量,可以進行代數(shù)運算、比較大小;向量有方向,大小,雙重性,不能比較大小
2025-06-25 06:54
【總結】平面向量基本定理北京市第五中學王琦一、教學內(nèi)容解析本節(jié)課是《普通高中課程標準實驗教科書?數(shù)學4》(人教A版)第二章第三節(jié)的第一課時()《平面向量基本定理》.平面向量基本定理屬于概念性知識.平面向量基本定理是在向量知識體系中占有核心地位的定理.一方面,平面向量基本定理是平面向量正交分解及坐標表示的基礎,坐標表示使平面中的向量與它的坐標建立起了一一對應的關系,這為通過“數(shù)”的運算處
2025-04-17 01:00
【總結】題型二:平面向量的共線問題1、若A(2,3),B(x,4),C(3,y),且=2,則x=,y=2、已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,則一定共線的三點是()A.A、B、DB.A、B、CC.B、C、DD.A、C、D3、如果e1、e2是平面α內(nèi)兩個不共線的向量
2025-03-25 01:23
【總結】2020屆高考數(shù)學復習強化雙基系列課件25《平面向量及向量的基本運算》1)向量的有關概念①向量:既有大小又有方向的量。向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:。向量的大小即向量的模(長度),記作||。②零向量:長度為0的向量,記為,其方向
2024-11-10 00:27
【總結】實用標準文案平面向量中“三點共線定理”妙用對平面內(nèi)任意的兩個向量的充要條件是:存在唯一的實數(shù),使由該定理可以得到平面內(nèi)三點共線定理:三點共線定理:在平面中A、B、P三點共線的充要條件是:對于該平面內(nèi)任意一點的O,存在唯一的一對實數(shù)x,y使得:且。特別地有:當點P在線段AB上時, 當點P在線段AB之外時, 筆者在經(jīng)過多年高三復習教學中發(fā)現(xiàn),運用
2025-08-05 06:02
【總結】向量的坐標表示平面向量基本定理一、填空題1.若e1,e2是平面內(nèi)的一組基底,則下列四組向量能作為平面向量的基底的是________.①e1-e2,e2-e1②2e1+e2,e1+2e2③2e2-3e1,6e1-4e2④e1+e2,e1-e22.下面三種說法中,正確的是________.①一個平面
2024-12-05 10:15