【總結(jié)】習(xí)題1—1解答1.設(shè),求解;2.設(shè),證明:3.求下列函數(shù)的定義域,并畫出定義域的圖形:(1)(2)(3)(4)yx11-1-1O解(1)yx11-1-1O(2)yx-a-bcOzab
2025-06-20 03:33
【總結(jié)】1-11.(1)[-3,3];(2)(-∞,0)∪(2,+∞);(3)(-2,1);(4)(-1.01,-1)∪(-1,0.99)2.(1)[-1,0)∪(0,1);(2)(1,2];(3)[-6,1).3.(1)(-∞,1)∪
2025-01-09 19:52
【總結(jié)】,并指出哪些方程是線性微分方程:(1)(2)(3)(4)解(1)1階非線性(2)1階線性(3)3階線性(4)1階線性(1)(2)(C為任意常數(shù))(3)(C為任意常數(shù))(4)(C1,C2為任意常數(shù))(5)(C為任意常數(shù))
2025-06-20 05:05
【總結(jié)】第三部分不定積分第32頁共32頁[選擇題]容易題1—60,中等題61—105,難題106—122.1.設(shè),則().(A).;(B).(C).(D)..答C2.設(shè),則()。(A).(B).(C).(D).
2025-03-25 01:57
【總結(jié)】典型例題例1.)16(log2)1(的定義域求函數(shù)xyx???解,0162??x,01??x,11??x????????214xxx,4221????xx及).4,2()2,1(?即例2).(.1,0,2)1()(xfxxxxx
2025-04-21 03:28
【總結(jié)】《微積分初步》課程復(fù)習(xí)指導(dǎo)(統(tǒng)設(shè)必修??疲┮?、考試題型1、單項(xiàng)選擇題(5題,共20分)2、填空題(5題,共20分)3、計(jì)算題(4題,共44分)4、應(yīng)用題(1題,16分)期末考試采用閉卷筆試形式,卷面滿分為100分,考試時(shí)間為90分鐘。二、考試說明1本課程的考核形式為形成性考核和期末考試相結(jié)合的方式,本課程形成性考核為課程平時(shí)作業(yè)。
2025-06-07 18:22
【總結(jié)】[試題分類]:入學(xué)考試(數(shù)學(xué)):垂直,則的斜率為()A.B.C.D.[答案]:B()A.B.C.D.[答案]:B,則等于()A.B.C.D.[答案]:C,b和實(shí)數(shù),下列等式中錯(cuò)誤的是()A.B.C.
2025-05-12 00:48
【總結(jié)】《高等數(shù)學(xué)(一)》期末第一套復(fù)習(xí)題一、選擇題1、極限的結(jié)果是(C)(A)(B)(C)(D)不存在2、方程在區(qū)間內(nèi)(B)(A)無實(shí)根(B)有唯一實(shí)根(C)有兩個(gè)實(shí)根(D)有三個(gè)實(shí)根3、是連續(xù)函數(shù),則是的( C?。ˋ)
2025-06-07 13:29
【總結(jié)】常用積分公式(一)含有的積分()1.=2.=()3.=4.=5.=6.=7.=8.=9.=(二)含有的積分10.=11.=12.=13.=14.=15.=16.=17.=18.=(三)含有的積分19.=20.=21.=(四)含有的積分22.=23.=24.=25
2025-08-05 19:25
【總結(jié)】第四章不定積分一、原函數(shù))()(xfxF??或dxxfxdF)()(?稱是的原函數(shù))(xF)(xf二、不定積分CxFdxxf???)()(三、基本性質(zhì)??)()(xfdxxf?????dxxfdxxfd)()(??CxFdxxF????)()(CxFxdF???
2024-11-03 21:17
【總結(jié)】第一篇:高數(shù)積分總結(jié) 高數(shù)積分總結(jié) 一、不定積分 1、不定積分的概念也性質(zhì) 定義1:如果在區(qū)間I上,可導(dǎo)函數(shù)F(x)的導(dǎo)函數(shù)為f(x),即對(duì)任一x?I,都有 F`(x)=f(x)或dF(x)...
2024-11-09 23:49
【總結(jié)】高數(shù)試題一、選擇題(本大題5小題,每小題4分,共20分),則l1與l2的夾角為[].(A);(B);(C);(D).z=xe2y在點(diǎn)P(1,0)出沿從P(1,0)到Q(2,-1)方向的方向?qū)?shù)為[].(0,0)點(diǎn)[].(A)偏導(dǎo)數(shù)連續(xù);(B)偏導(dǎo)數(shù)不存在;(C)偏導(dǎo)數(shù)存在但不可微;(D)可微但偏導(dǎo)數(shù)不連續(xù)。[
2025-04-16 22:31
【總結(jié)】變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為?21)(TTdttv設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv,求物體在這段時(shí)間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問題
2025-07-22 11:18
【總結(jié)】公開課二:定積分理論一、實(shí)際應(yīng)用背景1、運(yùn)動(dòng)問題—設(shè)物體運(yùn)動(dòng)速度為)(tvv?,求],[bat?上物體走過的路程。(1)取btttan??????10,],[],[],[],[12110nnttttttba??????,其中)1(1nitttiii??????;(2)任取)1](,[1nixxii
2025-08-11 16:32
【總結(jié)】167。定積分與微積分基本定理一、選擇題1.與定積分∫3π01-cosxdx相等的是().A.2∫3π0sinx2dxB.2∫3π0??????sinx2dxC.??????2∫3π0sinx2dxD.以上結(jié)論都不對(duì)解析∵1-cosx=2sin2x2,∴∫3π01-cos
2025-01-09 00:22