【總結(jié)】八年級下冊幾何證明題精選1、如圖,矩形中,與交于點,于于,求證:2、如圖,在平行四邊形中,分別為的角平分線,試證明:四邊形是矩形3、如圖,矩形的對角線相交于點,∥∥相交于,請判斷四邊形的形狀,并說明理由4、如圖,△中,的平分線交高于點,交于,為垂足,請證明:四邊形是菱形5、如圖,平行四邊形的對角線相交于點,
2025-03-24 02:11
【總結(jié)】八年級上冊幾何題專題訓(xùn)練100題1、已知:在⊿ABC中,∠A=900,AB=AC,在BC上任取一點P,作PQ∥AB交AC于Q,作PR∥CA交BA于R,D是BC的中點,求證:⊿RDQ是等腰直角三角形。2、已知:在⊿ABC
2025-03-24 12:38
【總結(jié)】八年級上冊幾何題專題訓(xùn)練50題1.如圖,已知△EAB≌△DCE,AB,EC分別是兩個三角形的最長邊,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度數(shù).2.如圖,點E、A、B、F在同一條直線上,AD與BC交于點O,已知∠CAE=∠DBF,AC=:∠C=∠D,OP平分∠AOB
【總結(jié)】第一篇:幾何證明題(難) 附加題: 1、已知:如圖,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的...
2025-10-12 22:37
【總結(jié)】第一篇:幾何證明題大全 幾何證明題 ,BD,CE是邊AC,AB上的中點,BD與CE相交于點O,BO與OD的長度有什么關(guān)系?BC邊上的中線是否一定過點O?為什么? 答題要求:請寫出詳細(xì)的證明過程,...
2025-10-13 00:16
【總結(jié)】1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯角相等,兩直線平行
2025-08-05 03:51
【總結(jié)】第一篇:高中幾何證明題 高中幾何證明題 如圖,在長方體ABCD-A1B1C1D1中,點E在棱CC1的延長線上,且CC1=C1E=BC=1/2AB=1.(1)求證,D1E//平面ACB1 (2)求...
2025-10-13 22:06
【總結(jié)】第一篇:初中幾何證明題 (1)如圖,在三角形ABC中,BD,CE是高,F(xiàn)G分別為ED,BC的中點,O是外心,求證AO∥FG問題補充: 證明:延長AO,交圓O于M,連接BM,則:∠ABM=90°,且...
2025-10-15 21:41
【總結(jié)】第一篇:幾何證明題方法 (初中、高中)幾何證明題一些技巧 初中幾何證明技巧(分類) 證明兩線段相等 。 。 。 。 。 。 。 。*(或等圓)中等弧所對的弦或與圓心等距的兩弦或等...
2024-10-27 15:56
【總結(jié)】初二上證明題0011.如圖,DE∥BC,∠D+∠B=180°.求證:AB∥CD.2.如圖,AB∥CD,GH分別與AB、CD相交于點E、F,EM平分∠AEG,F(xiàn)N平分∠CFG.求證:EM∥FN.3.如圖,OB=BC,OC平分∠AOB.求證:AO∥BC.4.B如圖,AB∥CD,∠A+∠E=∠AM
【總結(jié)】空間幾何證明A1ED1C1B1DCBA1、如圖,在正方體中,是的中點,求證:平面。2、已知中,面,,求證:面.3、正方體中,求證:(1);4、正方體ABCD—A1B1C1D1中.(1)求證
2025-03-25 06:42
【總結(jié)】1、證明線段相等或角相等兩條線段或兩個角相等是平面幾何證明中最基本也是最重要的一種相等關(guān)系。很多其它問題最后都可化歸為此類問題來證。證明兩條線段或兩角相等最常用的方法是利用全等三角形的性質(zhì),其它如線段中垂線的性質(zhì)、角平分線的性質(zhì)、等腰三角形的判定與性質(zhì)等也經(jīng)常用到。例1.已知:如圖1所示,中,。求證:DE=DF分析:由是等腰直角三角形可知,
2025-06-24 20:10
【總結(jié)】第一篇:幾何證明題1(學(xué)生版)及答案 中考集訓(xùn)之中檔題——幾何證明題一、三角形 1、如圖,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE與AB相交于F. (1)求證:△C...
2024-10-29 01:26
【總結(jié)】第一篇:如何做幾何證明題(無答案) 如何做幾何證明題 【知識精讀】 ,它對培養(yǎng)學(xué)生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數(shù)量關(guān)系;二是有關(guān)平面圖形的位置關(guān)系。這兩類問題...
2024-10-29 03:19
【總結(jié)】八年級上冊幾何證明題專項練習(xí)1.如圖,△ABC、△CDE均為等腰直角三角形,∠ACB=∠DCE=90°,點E在AB上.求證:△CDA≌△CEB.2.如圖,BD⊥AC于點D,CE⊥AB于點E,AD=AE.求證:BE=CD.3.如圖,已知點B,E,C,F(xiàn)在一條直線上,AB=DF,AC=DE,∠A=∠D.(1)求證:AC∥D
2025-03-24 02:09