【正文】
碩士研究生學(xué)位論文題 目基于RS的桉樹分布信息提取方法研究 扉頁:獨(dú)創(chuàng)性聲明本人聲明所呈交的論文是我個(gè)人在導(dǎo)師指導(dǎo)下進(jìn)行的研究工作及取得的研究成果。除了文中特別加以標(biāo)注和致謝的地方外,論文中不包含其他人或集體已經(jīng)發(fā)表或撰寫過的研究成果,對(duì)本文的研究做出貢獻(xiàn)的集體和個(gè)人均已在論文中作了明確的說明并表示了謝意。 研究生簽名: 日 期: 論文使用和授權(quán)說明本人完全了解云南大學(xué)有關(guān)保留、使用學(xué)位論文的規(guī)定,即:學(xué)校有權(quán)保留并向國家有關(guān)部門或機(jī)構(gòu)送交學(xué)位論文和論文電子版;允許論文被查閱或借閱;學(xué)??梢怨颊撐牡娜炕虿糠謨?nèi)容,可以采用影印、縮印或其他復(fù)制手段保存論文。 (保密的論文在解密后應(yīng)遵循此規(guī)定)研究生簽名: 導(dǎo)師簽名: 日 期: …………………………………………………………………本人及導(dǎo)師同意將學(xué)位論文提交至清華大學(xué)“中國學(xué)術(shù)期刊(光盤版)電子雜志社”進(jìn)行電子和網(wǎng)絡(luò)出版,并編入CNKI系列數(shù)據(jù)庫,傳播本學(xué)位論文的全部或部分內(nèi)容,同意按《中國優(yōu)秀博碩士學(xué)位論文全文數(shù)據(jù)庫出版章程》規(guī)定享受相關(guān)權(quán)益。研究生簽名: 導(dǎo)師簽名: 日 期: 摘要桉樹作為世界上三大速生林之一,因其具有很高的實(shí)用價(jià)值和經(jīng)濟(jì)效益,世界各地大量引種。云南作為桉樹種植大省之一,如何科學(xué)合理地經(jīng)營、管理桉樹人工林引起了人們的高度重視。做好桉樹森林資源調(diào)查是一項(xiàng)基礎(chǔ)性的工作,而傳統(tǒng)的森林資源調(diào)查費(fèi)時(shí)、費(fèi)力。近年來,隨著遙感技術(shù)的進(jìn)一步發(fā)展,利用遙感影像進(jìn)行特定的樹種信息提取為我們提供了一種有效手段。本文以云南省普洱市西盟縣為試驗(yàn)區(qū)。采用2009年12月28日中巴衛(wèi)星遙感影像,結(jié)合目前比較流行的決策樹方法與傳統(tǒng)分類方法對(duì)桉樹分布信息進(jìn)行提取對(duì)比研究。同時(shí)在分析不同地類的光譜、植被指數(shù)、主成分變換及紋理特征等信息的基礎(chǔ)上,構(gòu)建了適合研究區(qū)特點(diǎn)的分類方法,可較準(zhǔn)確地提取桉樹分布信息。研究發(fā)現(xiàn),在決策樹分類過程中,基于光譜、植被指數(shù)、主成分變換和紋理特征的決策樹是最佳的分類方法,分類效果最好,%,桉樹的生產(chǎn)者精度為86%;該分類方法比基于光譜、%,桉樹的生產(chǎn)者精度提高3%;%,桉樹的生產(chǎn)者精度提高8%。可見,紋理特征的加入有利于提高桉樹分布信息提取的精度。與傳統(tǒng)非監(jiān)督分類的ISODATA法和監(jiān)督分類的最大似然法相比,%,桉樹的生產(chǎn)者精度提高44%;%,桉樹的生產(chǎn)者精度提高28%;決策樹分類方法由于充分利用了各地類的光譜、植被指數(shù)、主成分變換、紋理等特征信息,提高了分類精度。本論文研究初步形成了一套基于決策樹的桉樹分布信息資源自動(dòng)提取的方法與技術(shù)。關(guān)鍵詞:桉樹;遙感;紋理;決策樹分類;信息提取AbstractThe eucalyptus is one of the three fastgrowing forests in the world. Because of its high practical value and economic benefits, it is introduced by a large number of parts in the world. Yunnan is one of the largest provinces of planting eucalyptus, and how to scientifically and reasonably operate and manage for eucalyptus plantations has attracted much attention for people. Making eucalyptus forest resources survey is a basic work, but the traditional forest resources survey is timeconsuming and laborious. In recent years, with the further development of remote sensing technology, it has bee one possibility by use of remote sensing images for specific species information extraction.Ximeng County in Pu39。er City of Yunnan Province is used for the test area in paper. Based on December 28 2009 CMB satellite remote sensing images, the paper makes the study of extraction contrast for eucalypt with the more popular method of the decision tree and the traditional classification of information. At the same time, on the basis of spectral analysis of different land types, vegetation index, principal ponent transform features and texture information, the paper constructs classification of the characteristics of the study area to accurately extract the eucalyptus distribution information.The study finds that the decision tree based on the spectral information, vegetation index, principal ponent transform features and texture features is the best classification method and the best classification result in the decision tree classification process. The overall accuracy of that classification method is to reach %, Kappa coefficient is to reach , and eucalyptus producer’s accuracy is to reach 86%. The overall accuracy of that classification method is % higher than that based on spectral information, vegetation indices and principal ponent features. The Kappa coefficient is higher, and eucalyptus producer precision is 3%high. The overall accuracy of that classification method is % higher than that based on spectral information and vegetation indices. The Kappa coefficient is higher, and eucalyptus producer’s accuracy is 8% high. The study shows that texture features are helpful to improve the accuracy of eucalypt extract. Compared with the traditional IS0DATA and supervised classification maximum likelihood method, the overall accuracy of that classification method is % higher than that of the unsupervised classification IS0DATA Kappa coefficient is higher, and eucalypt producer’s accuracy is 44% high. The overall accuracy of that classification method is % higher than that of the supervised classification maximum likelihood Kappa coefficient is higher, and eucalyptus producer’s accuracy is 28% high. Because of full use of the spectrum of the surface features, the principal ponent transform characteristics, texture, and other information, decision tree classification improves the classification accuracy. In this study, the method and technique for automatic extraction of eucalypt resources based on decision tree is formed initially.Keywords: Eucalyptus。 Remote Sensing。 Texture。 Decision Tree Classification。 Information extraction目錄 1 1 1 2 4 5 5 6 72. 遙感圖像計(jì)算機(jī)分類技術(shù) 8 9 9 9 傳統(tǒng)分類方法的不足 11 計(jì)算機(jī)非傳統(tǒng)分類方法 11(ANN) 12(SVM) 13 14 16 17 Kappa分析 17 19 研究區(qū)概況 19 21 21 21 27 29 33 33 35 38 40 45 基于決策樹的桉樹分布信息提取 45 4植被指數(shù)和主成分特征的決策樹信息提取 4植被指數(shù)、主成分特征和紋理特征的決策樹信息提取 54 基于其它分類方法的桉樹分布信息提取 60 ISODATA分類方法 60 最大似然分類方法 61 62 67 67 68參考文獻(xiàn): 70致謝 75VII本論文依托于國家自然科學(xué)基金項(xiàng)目——云南尾葉桉類林引種的環(huán)境影響與生態(tài)安全格局研究開展研究。桉樹作為外來樹種人工林中的一種,近20年來發(fā)展十分迅猛,規(guī)模不斷擴(kuò)大,在林業(yè)上具有不可爭(zhēng)議的經(jīng)濟(jì)效能,而且桉樹生長(zhǎng)迅速、輪伐期短、耐干旱、耐貧瘠、適應(yīng)性廣、用途廣泛,因此桉樹成為我國南方包括云南在內(nèi)普遍使用的一種造林樹種。我國自1890年引種桉樹以來,從零星種植到規(guī)模發(fā)展,現(xiàn)有桉樹人工林總面積達(dá)到170多萬hm178。,已成為我國南方速生豐產(chǎn)林的戰(zhàn)略性樹種(鄭明鏡等,2003)。云南作為桉樹種植的省份之一,2002年金光集團(tuán)與云南省政府合作,于2003年簽下153萬hm2的林漿紙基地,開始引種,關(guān)于引種桉樹人工林的生態(tài)問題爭(zhēng)論也隨之而來。目前需要解決的關(guān)鍵問題是科學(xué)合理地發(fā)展桉樹人工林,實(shí)現(xiàn)桉樹人工林的可持續(xù)發(fā)展。這就需要對(duì)桉樹進(jìn)行調(diào)查研究,提取桉樹分布信息,從而快速準(zhǔn)確的得到桉樹資源空間分布信息,為研究區(qū)生物多樣性保護(hù)、生態(tài)功能維持和恢復(fù)提供支持。傳統(tǒng)的森林資源調(diào)查費(fèi)時(shí)、費(fèi)力。隨著遙感技術(shù)的發(fā)展,因其具有覆蓋面積大、重復(fù)周期短、多時(shí)相性和動(dòng)態(tài)監(jiān)測(cè)等優(yōu)勢(shì),已成為一種最有效的資源調(diào)查和監(jiān)測(cè)手段,廣泛應(yīng)用于遙感信息提取中。本論文是利用遙感技術(shù),采用遙感傳統(tǒng)分類方法與目前比較流行的決策樹分類方法,通過分析桉樹與其他土地利用類型的光譜、紋理信息等信息,對(duì)中巴遙感影像進(jìn)行分類,從而實(shí)現(xiàn)對(duì)桉樹資源分布信息的準(zhǔn)確提取,為桉樹引種規(guī)范化和合理化提供技術(shù)支持。繼1972年美國實(shí)施地球資源衛(wèi)星計(jì)劃以來,衛(wèi)星遙感技術(shù)以迅猛的速度在全球范圍內(nèi)發(fā)展,隨著新的遙感平臺(tái)陸續(xù)升空,遙感儀器也不斷的進(jìn)行更新?lián)Q代。隨著航天遙感技術(shù)的快速發(fā)展, 遙感為地球科學(xué)研究提供數(shù)據(jù)的能力越來越強(qiáng), 已經(jīng)成為資源調(diào)查、環(huán)境監(jiān)測(cè)的重要技術(shù)手段[12]。基于遙感技術(shù)的桉樹空間分布信息提取,在國內(nèi)外研究中,可以參考的文獻(xiàn)資料很少,但現(xiàn)有的采用遙感技術(shù)提取其它植被信息的研究積累為本論文的研究提供了借鑒。植被不但是環(huán)境的重要組成因子,也是反映區(qū)域生態(tài)環(huán)境的最好標(biāo)志之一,同時(shí)也是土壤、水文等要素的解譯標(biāo)志[3]。因此,相關(guān)植被信息提取顯得極其重要。采用傳統(tǒng)的人工調(diào)查法耗時(shí)耗力,無法滿足大區(qū)域的準(zhǔn)確植被信息提取的需要,且遙感技術(shù)具有宏觀觀測(cè)等特點(diǎn),在大面積調(diào)查時(shí)具有較大優(yōu)勢(shì)。因此植被信息的調(diào)查成為遙感的重要應(yīng)用領(lǐng)域[35]。植被遙感信息提取的目的是在遙感影像上有效確定植被的分布、類型、長(zhǎng)勢(shì)等信息