【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程 一、教學(xué)目標(biāo)(一)知識(shí)教學(xué)點(diǎn)使學(xué)生掌握雙曲線的定義和標(biāo)準(zhǔn)方程,以及標(biāo)準(zhǔn)方程的推導(dǎo).(二)能力訓(xùn)練點(diǎn)在與橢圓的類比中獲得雙曲線的知識(shí),從而培養(yǎng)學(xué)生分析、歸納、推理等能力.(三)學(xué)科滲透點(diǎn)本次課注意發(fā)揮類比和設(shè)想的作用,與橢圓進(jìn)行類比、設(shè)想,使學(xué)生得到關(guān)于雙曲線的定義、標(biāo)準(zhǔn)方程一個(gè)比較深刻的認(rèn)識(shí).二、教材分析1.重點(diǎn):雙曲線的定義和雙曲線
2025-08-04 07:08
【總結(jié)】 圓錐曲線的定義、方程與性質(zhì)]1.設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=-2,則拋物線的方程是( )A.y2=-8xB.y2=8xC.y2=-4xD.y2=4x2.橢圓+=1的離心率為( )A.B.C.D.3.雙曲線2x2-y2=8的實(shí)軸長(zhǎng)是( )A.2B.2C.4D.44.過(guò)拋物線y2=2px(p0)的焦點(diǎn)F的直
2025-07-23 20:57
【總結(jié)】高二年級(jí)第一學(xué)期階段數(shù)學(xué)試卷(選修2-1部分)一、選擇題1.拋物線y2=ax(a≠0)的焦點(diǎn)到其準(zhǔn)線的距離是( )A. B.C.|a|D.-2.設(shè)P是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為、F2分別是雙曲線的左、右焦點(diǎn),若,
2025-06-23 08:17
【總結(jié)】2022屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件77《圓錐曲線-軌跡方程》基本知識(shí)概要:一、求軌跡的一般方法:1.直接法:如果動(dòng)點(diǎn)運(yùn)動(dòng)的條件就是一些幾何量的等量關(guān)系,這些條件簡(jiǎn)單明確,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法。用直接法求動(dòng)點(diǎn)軌跡一般有建系,設(shè)點(diǎn),列式,化簡(jiǎn),證明五個(gè)步驟,最后的證明可以省
2025-07-24 10:09
【總結(jié)】二 圓錐曲線的參數(shù)方程[學(xué)習(xí)目標(biāo)].、拋物線的參數(shù)方程.、有關(guān)點(diǎn)的軌跡問(wèn)題.[知識(shí)鏈接],參數(shù)φ是OM的旋轉(zhuǎn)角嗎?提示 橢圓的參數(shù)方程(φ為參數(shù))中的參數(shù)φ不是動(dòng)點(diǎn)M(x,y)的旋轉(zhuǎn)角,它是點(diǎn)M所對(duì)應(yīng)的圓的半徑OA(或OB)的旋轉(zhuǎn)角,稱為離心角,不是OM的旋轉(zhuǎn)角.,參數(shù)φ的三角函數(shù)secφ的意義是什么?提示 secφ=,其中φ∈[0,2π)且φ≠,φ≠
2025-08-05 04:45
【總結(jié)】word完美格式圓錐曲線綜合練習(xí)一、選擇題:1.已知橢圓的長(zhǎng)軸在軸上,若焦距為4,則等于()A.4B.5C.7D.82.直線經(jīng)過(guò)橢圓的一個(gè)焦點(diǎn)和一個(gè)頂點(diǎn),則該橢圓的離心率為()A.B.C.D.3.設(shè)雙曲線的漸近線方程為,則的值為()A.4
2025-07-25 12:41
【總結(jié)】軌跡方程經(jīng)典例題一、軌跡為圓的例題:1、必修2課本P124B組2:長(zhǎng)為2a的線段的兩個(gè)端點(diǎn)在軸和軸上移動(dòng),求線段AB的中點(diǎn)M的軌跡方程:必修2課本P124B組:已知M與兩個(gè)定點(diǎn)(0,0),A(3,0)的距離之比為,求點(diǎn)M的軌跡方程;(一般地:必修2課本P144B組2:已知點(diǎn)M(,)與兩個(gè)定點(diǎn)的距離之比為一個(gè)常數(shù);討論點(diǎn)M(,)的軌跡方程(分=1,與1進(jìn)行討論)
2025-03-25 00:04
【總結(jié)】圓錐曲線經(jīng)典題型 一.選擇題(共10小題)1.直線y=x﹣1與雙曲線x2﹣=1(b>0)有兩個(gè)不同的交點(diǎn),則此雙曲線離心率的范圍是( )A.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪(,+∞)2.已知M(x0,y0)是雙曲線C:=1上的一點(diǎn),F(xiàn)1,F(xiàn)2是C的左、右兩個(gè)焦點(diǎn),若<0,則y0的取值范圍是( ?。〢. B. C. D.3.設(shè)F1,F(xiàn)2分
2025-06-23 07:22
【總結(jié)】圓錐曲線基礎(chǔ)訓(xùn)練一、選擇題:1.已知橢圓上的一點(diǎn)到橢圓一個(gè)焦點(diǎn)的距離為,則到另一焦點(diǎn)距離為()A.B.C.D.2.若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和為,焦距為,則橢圓的方程為()A.B.C.或D.以上都不對(duì)3
2025-06-22 15:57
【總結(jié)】......直線與圓一、考點(diǎn)內(nèi)容1、求直線斜率方法(1)知直線傾斜角,則斜率即傾斜角為的直線沒(méi)有斜率(2)知直線過(guò)兩點(diǎn),,則斜率(3)知直線一般式方程,則斜率知直線斜截式方程,可以直接寫(xiě)出斜率2、求直線方程方法——點(diǎn)斜
【總結(jié)】WORD資料可編輯圓錐曲線專題練習(xí)一、選擇題,則到另一焦點(diǎn)距離為()A.B.C.D.2.若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和為,焦距為,則
2025-06-24 02:09
【總結(jié)】運(yùn)用聯(lián)想探究圓錐曲線的切線方程現(xiàn)行人教版統(tǒng)編教材高中數(shù)學(xué)第二冊(cè)上、第75頁(yè)例題2,給出了經(jīng)過(guò)圓上一點(diǎn)的切線方程為;當(dāng)在圓外時(shí),過(guò)點(diǎn)引切線有且只有兩條,過(guò)兩切點(diǎn)的弦所在直線方程為。那么,在圓錐曲線中,又將如何?我們不妨進(jìn)行幾個(gè)聯(lián)想。聯(lián)想一:(1)過(guò)橢圓上一點(diǎn)切線方程為;(2)當(dāng)在橢圓的外部時(shí),過(guò)引切線有兩條,過(guò)兩切點(diǎn)的弦所在直線方程為:證明:(1)的兩邊對(duì)求導(dǎo),得,得,由
2025-06-24 04:24
【總結(jié)】1.掌握橢圓的定義、標(biāo)準(zhǔn)方程、簡(jiǎn)單的幾何性質(zhì)、了解橢圓的參數(shù)方程.2.掌握雙曲線的定義、標(biāo)準(zhǔn)方程、簡(jiǎn)單的幾何性質(zhì).3.掌握拋物線的定義、標(biāo)準(zhǔn)方程、簡(jiǎn)單的幾何性質(zhì).的初步應(yīng)用.3.有關(guān)直線與圓錐曲線位置關(guān)系問(wèn)題,是高考的重?zé)狳c(diǎn)問(wèn)題,這類問(wèn)題常涉及圓錐曲線的性質(zhì)和直線的基本知識(shí)以及線段中點(diǎn)、弦長(zhǎng)等,分析
2025-03-23 06:21
【總結(jié)】1.掌握橢圓的定義、標(biāo)準(zhǔn)方程、簡(jiǎn)單的幾何性質(zhì)、了解橢圓的參數(shù)方程.2.掌握雙曲線的定義、標(biāo)準(zhǔn)方程、簡(jiǎn)單的幾何性質(zhì).3.掌握拋物線的定義、標(biāo)準(zhǔn)方程、簡(jiǎn)單的幾何性質(zhì).的初步應(yīng)用.3.有關(guān)直線與圓錐
2025-11-01 23:44
【總結(jié)】圓錐曲線與方程知識(shí)點(diǎn)總結(jié)圓錐曲線與方程1.掌握橢圓的定義、標(biāo)準(zhǔn)方程、簡(jiǎn)單的幾何性質(zhì)、了解橢圓的參數(shù)方程.2.掌握雙曲線的定義、標(biāo)準(zhǔn)方程、簡(jiǎn)單的幾何性質(zhì).3.掌握拋物線的定義、標(biāo)準(zhǔn)方程、簡(jiǎn)單的幾何性質(zhì).的初步應(yīng)用.3.有關(guān)直線與圓錐曲線位置關(guān)系問(wèn)題,是高考的重?zé)狳c(diǎn)問(wèn)題,這類
2025-08-14 11:24