【總結(jié)】演講口才一點(diǎn)通:如何讓觀點(diǎn)具有高度概括性觀點(diǎn)有高度概括性,聽眾才容易記得住。在有些會議上經(jīng)常有人說今天的發(fā)言我就講一個(gè)字,一個(gè)字講了半個(gè)小時(shí),有的人說我就一句話,一句話講了兩個(gè)小時(shí)。事實(shí)上一個(gè)會議一場演講不要指望聽眾全記住,回去后能記住一個(gè)字、一句話就很不錯了。針對這個(gè)概括性我舉幾個(gè)例子來說明。柳傳志的管理哲學(xué)當(dāng)今講中國的企業(yè)管理,有一
2025-08-27 18:19
【總結(jié)】應(yīng)用—求幾種典型圖形的面積一、復(fù)習(xí)引入微積分基本定理(牛頓-萊布尼茨公式)()d()()()bbaafxxFxFbFa?????????badxxfxbxaxxfxfy)(.,,)0)()(((結(jié)果:定積
2025-05-11 04:22
【總結(jié)】導(dǎo)數(shù)的幾何意義自學(xué)導(dǎo)引1.導(dǎo)數(shù)的幾何意義(1)割線斜率與切線斜率設(shè)函數(shù)y=f(x)的圖象如圖所示,AB是過點(diǎn)A(x0,f(x0))與點(diǎn)B(x0+Δx,f(x0+Δx))的一條割線,此割線的斜率是ΔyΔx=f?x0+Δx
2025-07-26 02:55
【總結(jié)】幾何意義及應(yīng)用教學(xué)目標(biāo)A層:理解復(fù)數(shù)的運(yùn)算與復(fù)數(shù)模的關(guān)系,能夠應(yīng)用復(fù)數(shù)的幾何意義,模仿例題解決一些簡單的復(fù)數(shù)幾何問題.B層:在A層的基礎(chǔ)上,通過滲透轉(zhuǎn)化數(shù)形結(jié)合的思想和方法,能夠解決例題變式題,甚至可以自己構(gòu)造新的題型.培養(yǎng)探索和創(chuàng)新能力.
2025-08-16 00:51
2025-08-16 00:37
【總結(jié)】回顧①平均變化率?fx121)()??fxxx2f(x函數(shù)y=f(x)的定義域?yàn)镈,∈D,f(x)從x1到x2平均變化率為:②割線的斜率OABxyY=f(x)x1x2f(x1)f(x2)x2-x1=△xf(x2)-f(x1)=△y
2025-10-10 16:25
【總結(jié)】2.2.2向量減法運(yùn)算及其幾何意義一、教學(xué)目標(biāo)1.了解相反向量的概念;2.掌握向量的減法,會作兩個(gè)向量的減向量,并理解其幾何意義;3.通過闡述向量的減法運(yùn)算可以轉(zhuǎn)化成向量的加法運(yùn)算,使學(xué)生理解事物之間可以相互轉(zhuǎn)化的辯證思想.二、課時(shí)1課時(shí)三、教學(xué)重點(diǎn)向量減法的概念和向量減法的作圖法.四、教學(xué)難點(diǎn)
2026-01-06 02:05
2025-08-05 19:13
【總結(jié)】導(dǎo)數(shù)的幾何意義英德中學(xué)高二數(shù)學(xué)備課組導(dǎo)數(shù)的幾何意義課堂引入學(xué)習(xí)目標(biāo)新知探究新知運(yùn)用學(xué)習(xí)反思問題1:平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?問題2如圖直線l1是曲線C的切線嗎?l2呢?l21AB0xy對于一般的曲線
【總結(jié)】復(fù)數(shù)的幾何意義實(shí)數(shù)的幾何意義?新課導(dǎo)入在幾何上,我們用什么來表示實(shí)數(shù)?實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來表示.數(shù)軸上的點(diǎn)實(shí)數(shù)(數(shù))一一對應(yīng)(形)Z=a+bi(a,b∈R)實(shí)部虛部一個(gè)復(fù)數(shù)由什么確定?你能否找到用來表示
2025-07-26 05:14
【總結(jié)】歡迎各位老師光臨指導(dǎo)!情境一:諺語:學(xué)如逆水行舟,不進(jìn)則退.是何原因?你能從數(shù)學(xué)的角度來解釋嗎?問題:一架飛機(jī)由北京飛往香港,然后再由香港返回北京,我們把北京記作A點(diǎn),香港記作B點(diǎn),那么這架飛機(jī)的位移是多少?怎樣用向量來表示呢?北京(A
2025-10-28 23:39
【總結(jié)】郭秀剛問題1:已知復(fù)數(shù)Z1、Z在復(fù)平面上的對應(yīng)分別為A、B,O為原點(diǎn),∠AOB=π/6,若Z1=1+2i,求Z。XYOAB問題2:將問題1中向量OA平移,使O移至Q(1,1),A移至P(2,3),再繞Q點(diǎn)逆時(shí)針方向旋轉(zhuǎn)π/6得向量QB,求點(diǎn)B對應(yīng)的復(fù)數(shù)。XYAPQ
2025-11-08 05:27
【總結(jié)】導(dǎo)數(shù)的幾何意義回顧①平均變化率函數(shù)y=f(x)從x1到x2平均變化率為:②平均變化率的幾何意義:割線的斜率OABxyY=f(x)x1x2f(x1)f(x2)x2-x1=△xf(x2)-f(x1)=△y121)()??
【總結(jié)】【課標(biāo)要求】1.了解導(dǎo)數(shù)的概念;理解導(dǎo)數(shù)的幾何意義.2.會求導(dǎo)數(shù).3.根據(jù)導(dǎo)數(shù)的幾何意義,會求曲線上某點(diǎn)處的切線方程.【核心掃描】1.利用導(dǎo)數(shù)的幾何意義求曲線在某點(diǎn)處的切線方程.(重點(diǎn))2.準(zhǔn)確理解在某點(diǎn)處與過某點(diǎn)的切線方程.(易混點(diǎn))自學(xué)導(dǎo)引1.切線:如圖,當(dāng)點(diǎn)
2025-07-21 21:55
【總結(jié)】公開課?復(fù)數(shù)乘除法的幾何意義的應(yīng)用問題2:將問題1中向量OA平移,使O移至Q(1,1),A移至P(2,3),再繞Q點(diǎn)逆時(shí)針方向旋轉(zhuǎn)π/6得向量QB,求點(diǎn)B對應(yīng)的復(fù)數(shù)。XYAPQOB問題3:設(shè)復(fù)數(shù)Z0、Z1對應(yīng)于復(fù)平面上的點(diǎn)為A、B,C為復(fù)平面上的一點(diǎn),∠CAB=θ,求C對
2025-08-16 02:19