【總結】《兩角和與差的正弦》教學設計 課型:新授課 一、教學內容解析 ,是一節(jié)公式類課.學生在上一節(jié)課學習了兩角和差的余弦公式。本課的主要內容是兩角和差正弦公式的推導及簡單的應用。重點是公式的掌握及應用...
2025-04-03 03:57
【總結】兩角和與差的余弦公式教案 一.【教學目標】 :理解兩角和與差的余弦公式的推導過程,熟記兩角和與差的余弦公式,運用兩角和與差的余弦公式,解決相關數學問題。 2能力目標:培養(yǎng)學生嚴密而準確的數學表達...
2025-04-03 02:41
【總結】不用計算器,求的值.1.15°能否寫成兩個特殊角的和或差的形式?2.cos15°=cos(45°-30°)=cos45°-cos30°成立嗎?
2024-11-09 04:48
【總結】兩角差的余弦公式教學目的:經歷用向量數量積推導出兩角差的余弦公式的過程,進一步體會向量方法的作用;掌握兩角差的余弦公式的結構特征,并會應用。教學重點:兩角差的余弦公式結構及其應用教學難點:兩角差的余弦公式的推導。教學過程一、新課引入課本P136的問題二、新課[1、問題的提出co
2024-12-08 22:40
【總結】、余弦、正切公式2020、12、24一、復習:?)cos(????C)(???簡記:兩角差的余弦公式??)cos(??????sinsincoscos?同名積,符號反。二、公式的推導??)cos(??)](cos[???????
2024-11-18 12:17
【總結】§2兩角和與差的三角函數2.1兩角差的余弦函數2.2兩角和與差的正弦、余弦函數,)1.問題導航(1)根據α+β=α-(-β),如何由Cα-β推出Cα+β?(2)對任意角α,β,cos(α-β)=cosα-cosβ成立嗎?(3)如
2024-11-28 00:14
【總結】課時跟蹤檢測(二十)兩角和與差的正弦、余弦和正切公式一抓基礎,多練小題做到眼疾手快1.(2022·西安質檢)sin45°cos15°+cos225°sin165°=()A.1B.12C.32D.-12解析:選Bsin45
2025-01-09 17:56
【總結】【課題】1.1兩角和與差的余弦公式與正弦公式(一)【教學目標】知識目標:理解兩角和與差的余弦公式.能力目標:通過三角計算的學習,培養(yǎng)學生的計算技能與計算工具使用技能.【教學重點】本節(jié)課的教學重點是兩角和與差的余弦公式.【教學難點】難點是公式的推導和運用.【教學設計】介紹新知識
2024-12-09 03:28
【總結】數學:“兩角差的余弦公式”教學設計一、教學內容解析三角恒等變換處于三角函數與數學變換的結合點和交匯點上,是前面所學三角函數知識的繼續(xù)與發(fā)展,是培養(yǎng)學生推理能力和運算能力的重要素材.兩角差的余弦公式是《三角恒等變換》這一章的基礎和出發(fā)點,公式的發(fā)現和證明是本節(jié)課的重點,也是難點.由于和與差內在的聯系性與統(tǒng)一性,我們可以
2024-11-18 21:26
【總結】課題:兩角和與差的正切朝花夕拾目標1目標2目標1和角與差角正切公式的推導??tantantan1tantan?????????????tantantan1tantan???????????目標2和角與差角正切公式的應用????tantantan1tantan?
2024-11-09 23:32
【總結】注意:1。公式中三角符號的順序CCSS2。公式中角的順序????3。公式中的運算符號Cα+β:COS(?+?)=COS?COS?-Si
2025-08-16 02:07
【總結】 第2課時 兩角和與差的正弦、余弦、正切公式(二) 兩角和與差的正切公式 名稱 公式 簡記符號 使用條件 兩角和 的正切 tan(α+β)= T(α+β) α,β,...
2025-04-03 03:46
【總結】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(一)1.能根據兩角差的余弦公式推導出兩角和與差的正弦公式及兩角和的余弦公式,并能利用公式進行化簡求值.(重點)2.熟練掌握兩角和與差的正弦、余弦公式的特征和符號規(guī)律.(易混點)3.能正用、逆用、變形用公式進行化簡求值.
2024-12-04 18:51
【總結】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(二)1.能利用兩角和與差的正、余弦公式推導出兩角和與差的正切公式并能應用.(重點)2.能夠熟練地正用、逆用和變形應用兩角和與差的正切公式.(重點、難點)兩角和與差的正切公式做一做(1)已知tanα=1
【總結】(1)兩角和與差的余弦公式上海市楊浦高級中學曹麗瓊一、教學內容分析兩角和與差的余弦是三角恒等式的起始課,是本章中一系列的三角恒等式的基礎,因此對兩角和與差的余弦公式的掌握必須扎實.兩角和與差的余弦公式的推導是本節(jié)課的重點和難點.這一推導過程難度較大也比較復雜,教師可以通過設置問題情景,提出如何用兩角的三角比表示兩角差的余弦三角比.
2024-12-09 00:45