【總結(jié)】東北大學(xué)碩士學(xué)位論文第1章 緒 論智能變頻空調(diào)模糊神經(jīng)網(wǎng)絡(luò)控制系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)畢業(yè)論文目 錄獨(dú)創(chuàng)性聲明 I摘 要 IIIAbstract V目 錄 VII第1章 緒 論 1 1 1 2 7第2章 智能變頻空調(diào)控制系統(tǒng)控制方案 9 9 9
2025-06-28 04:38
【總結(jié)】2022/2/21BP人工神經(jīng)網(wǎng)絡(luò)Back-propagationArtificialNeuralNetworks2022/2/22張凌數(shù)計(jì)學(xué)院聯(lián)系電話:13605935915Email:2022/2/23主要參考書目1、PhilipD.Wasserman,NeuralComputing:
2025-01-08 03:59
【總結(jié)】第7章典型神經(jīng)網(wǎng)絡(luò)BP?反向傳播網(wǎng)絡(luò)Back—PropagationNetwork,由于其權(quán)值的調(diào)整采用反向傳播(Backpropagation)的學(xué)習(xí)算法,因此被稱為BP網(wǎng)絡(luò)。BP網(wǎng)絡(luò)?是一種單向傳播的多層前向網(wǎng)絡(luò)?其神經(jīng)元的變換函數(shù)是S型函數(shù),因此輸出量為0到1之
2025-01-05 15:31
【總結(jié)】基于神經(jīng)元網(wǎng)絡(luò)的智能控制神經(jīng)元網(wǎng)絡(luò)的特點(diǎn):1)非線性2)分布處理3)學(xué)習(xí)并行和自適應(yīng)4)數(shù)據(jù)融合5)適用于多變量系統(tǒng)6)便于硬件實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)的發(fā)展歷史?始于19世紀(jì)末20世紀(jì)初,源于物理學(xué)、心理學(xué)和神經(jīng)生理學(xué)的跨學(xué)科研究。?現(xiàn)代研究:20世紀(jì)40年代。從原理上證明了人工神經(jīng)網(wǎng)絡(luò)可以計(jì)算任何算術(shù)相邏
2025-01-06 05:21
【總結(jié)】第3章神經(jīng)網(wǎng)絡(luò)控制?幾種典型的神經(jīng)網(wǎng)絡(luò)模型前饋(BP)、反饋(Hopfield)型等?它們在系統(tǒng)建模及控制中的應(yīng)用概述神經(jīng)元模型生物神經(jīng)元軸突末梢傳導(dǎo)信息接受器通過突觸實(shí)現(xiàn)神經(jīng)元之間的信息傳遞神經(jīng)元模型(續(xù))人工神經(jīng)元模
2025-01-08 05:18
【總結(jié)】14-7PID神經(jīng)網(wǎng)絡(luò)控制?闡述用PID神經(jīng)網(wǎng)絡(luò)進(jìn)行單變量、多變量非線性動態(tài)系統(tǒng)的控制問題?具有多輸入多輸出、內(nèi)部具有強(qiáng)耦合作用的多變量系統(tǒng),在工程中是不少見的,實(shí)現(xiàn)對多變量系統(tǒng)的有效控制的關(guān)鍵是解耦控制問題24-7-1PID神經(jīng)網(wǎng)絡(luò)單變量控制1.控制結(jié)構(gòu)
2024-10-19 05:00
【總結(jié)】1研究生課程期終論文課程名稱:神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)任課教師:彭洪論文題目:基于遺傳-BP神經(jīng)網(wǎng)絡(luò)的手寫數(shù)字識別姓名:
2025-06-05 07:07
【總結(jié)】1神經(jīng)網(wǎng)絡(luò)PID控制圖一神經(jīng)網(wǎng)絡(luò)PID控制系統(tǒng)結(jié)構(gòu)圖一、方案一2)()(1kekx?)1()()()(2?????kekekekx)2()1(2)()()(23???????kekekekekx)()()(kykrke????控制的結(jié)構(gòu)。具有增量加權(quán)和。由此可見,為輸入信號的為權(quán)系數(shù),式中的輸出
【總結(jié)】第三章人工神經(jīng)網(wǎng)絡(luò)控制及應(yīng)用2022/6/231人工神經(jīng)網(wǎng)絡(luò)定義人工神經(jīng)網(wǎng)絡(luò)是一個由許多簡單的并行工作的處理單元組成的系統(tǒng),其功能取決于網(wǎng)絡(luò)的結(jié)構(gòu)、連接強(qiáng)度以及各單元的處理方式。人工神經(jīng)網(wǎng)絡(luò)是一種旨在模仿人腦結(jié)構(gòu)及其功能的信息處理系統(tǒng)。神經(jīng)網(wǎng)絡(luò)是由多個非常簡單的處理單元彼此按某種方式相互連
2025-05-26 18:04
【總結(jié)】基于BP神經(jīng)網(wǎng)絡(luò)的PID控制在主汽溫控制系統(tǒng)中的應(yīng)用摘要 2第1章緒論 3選題的背景 3 3國內(nèi)外研究現(xiàn)狀 5第2章神經(jīng)網(wǎng)絡(luò)概述 6引言 6人工神經(jīng)網(wǎng)絡(luò)的基本理論 6 6神經(jīng)網(wǎng)絡(luò)原理 7MP模型 7 8BP神經(jīng)網(wǎng)絡(luò) 9BP神經(jīng)網(wǎng)路概述 9BP算法的計(jì)算公式及流程圖 10 12第3章神經(jīng)網(wǎng)絡(luò)PID
2025-06-19 15:42
【總結(jié)】人工神經(jīng)網(wǎng)絡(luò)與神經(jīng)網(wǎng)絡(luò)控制陸寶春2023年11月人工神經(jīng)網(wǎng)絡(luò)與神經(jīng)網(wǎng)絡(luò)控制1人工神經(jīng)網(wǎng)絡(luò)概述2人工神經(jīng)網(wǎng)絡(luò)發(fā)展3人工神經(jīng)網(wǎng)絡(luò)模型4神經(jīng)網(wǎng)絡(luò)的工作方式及其特點(diǎn)5神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)開發(fā)過程6人工神經(jīng)網(wǎng)絡(luò)的應(yīng)用7神經(jīng)網(wǎng)絡(luò)控制8凈水廠最佳投藥量的神經(jīng)網(wǎng)絡(luò)控制系統(tǒng)9神經(jīng)網(wǎng)絡(luò)控制中有
2025-02-28 14:04
【總結(jié)】智能中國網(wǎng)提供學(xué)習(xí)支持BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法概述?Rumelhart,McClelland于1985年提出了BP網(wǎng)絡(luò)的誤差反向后傳BP(BackPropagation)學(xué)習(xí)算法?BP算法基本原理?利用輸出后的誤差來估計(jì)輸出層的直接前導(dǎo)層的誤差,再用這個誤差估計(jì)更前一層的誤差,如此一層一層的反
2025-01-14 19:56
【總結(jié)】BP神經(jīng)網(wǎng)絡(luò)的幾種改進(jìn)方法研一隊(duì):張之武2022年6月8日BP神經(jīng)網(wǎng)絡(luò)的幾種改進(jìn)方法?BP網(wǎng)絡(luò)存在的問題:????BP神經(jīng)網(wǎng)絡(luò)的幾種改進(jìn)方法?主要的改進(jìn)策略:??BP
2025-05-25 22:33
【總結(jié)】人工神經(jīng)網(wǎng)絡(luò)(ArtificialNeuralNetwroks-ANN)-HZAU數(shù)模基地引言?利用機(jī)器模仿人類的智能是長期以來人們認(rèn)識自然、改造自然和認(rèn)識自身的理想。?研究ANN目的:?(1)探索和模擬人的感覺、思維和行為的規(guī)
2025-05-25 22:34
【總結(jié)】2022/2/1神經(jīng)網(wǎng)絡(luò)原理與應(yīng)用1回歸神經(jīng)網(wǎng)絡(luò)(recurrentneuralworks)?回歸網(wǎng)絡(luò)是一種人們越來越感興趣的網(wǎng)絡(luò)。?回歸網(wǎng)絡(luò)中包含一定的動態(tài)環(huán)節(jié)作為信息存儲,在系統(tǒng)建模時可以充分利用這一特性,減小網(wǎng)絡(luò)的規(guī)模。?回歸網(wǎng)絡(luò)包括Elman網(wǎng)絡(luò)和Hopfield網(wǎng)絡(luò),其中Elman網(wǎng)絡(luò)是一種兩層的前饋網(wǎng)絡(luò)20
2025-01-04 14:42