【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第3課時oyxy=ax2+bx+c的圖象的作法和性質(zhì)的過程..y=a(x-h)2和y=a(x-h)2+k的圖象,并能理解它與y=ax2的圖象的關(guān)系.理解a,h和k對二次函數(shù)圖象的影響.y=a(x-h)2+k的圖象的開口方向、對稱軸和頂點(diǎn)坐標(biāo).
2025-06-15 02:53
【總結(jié)】◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎
2025-06-12 08:20
2025-06-15 03:00
2025-06-18 04:10
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第二章二次函數(shù)課堂達(dá)標(biāo)素養(yǎng)提升第二章二次函數(shù)第1課時二次函數(shù)的圖象與性質(zhì)課堂達(dá)標(biāo)一、選擇題第1課時二次函數(shù)y=±x2的圖象與性質(zhì)1.下列關(guān)于二次函數(shù)y=x2的圖象的說法:①是一條拋物線;②開口向上;③是軸對稱圖形;④過點(diǎn)(
2025-06-17 21:38
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第二章二次函數(shù)課堂達(dá)標(biāo)素養(yǎng)提升第二章二次函數(shù)第4課時二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)課堂達(dá)標(biāo)一、選擇題1.2022·浦東新區(qū)一模如果二次函數(shù)y=ax2+bx+c的圖象全部在x軸的下方,那么下列判斷正確的是()A.
2025-06-18 02:59
2025-06-18 03:12
【總結(jié)】謝謝觀看Thankyouforwatching!
2025-06-20 03:59
【總結(jié)】二次函數(shù)的圖象與性質(zhì)第二章二次函數(shù)導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)第2課時二次函數(shù)y=ax2和y=ax2+c的圖象與性質(zhì)學(xué)習(xí)目標(biāo)y=ax2和y=ax2+c的圖象.(難點(diǎn))y=ax2和y=ax2+c的性質(zhì)并會應(yīng)用.(重點(diǎn))y=ax2與y=ax2+c的聯(lián)系.導(dǎo)入新課
【總結(jié)】第二章二次函數(shù)導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)二次函數(shù)的圖象與性質(zhì)第1課時二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)學(xué)習(xí)目標(biāo)1.知道二次函數(shù)的圖象是一條拋物線.2.會畫二次函數(shù)y=x2與y=-x2的圖象.(難點(diǎn))3.掌握二次函數(shù)y=x2與y=-x2的性質(zhì),并會靈活應(yīng)用.(重點(diǎn))
2025-06-18 03:07
【總結(jié)】第二章二次函數(shù)本專題包括二次函數(shù)的圖象及性質(zhì)的簡單應(yīng)用、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn)、二次函數(shù)圖象的平移變換等內(nèi)容,屬于中考熱點(diǎn)問題,熟練掌握二次函數(shù)的圖象及性質(zhì)、對稱軸、頂點(diǎn)坐標(biāo)、二次函數(shù)的最值等知識點(diǎn)是解題的關(guān)鍵.類型1二次函數(shù)的圖象及應(yīng)用y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①a0;②該函數(shù)的圖象關(guān)
2025-06-12 00:36
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第2課時的圖象,并能夠比較它們2yax?2(0)yaxca???ac和與對二次函數(shù)圖象的影響.的圖象的異同,理解2yax?2(0)???yaxca和圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo).函數(shù)y=x2y=-x
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第4課時些數(shù)學(xué)問題.y=ax2+bx+c的圖象特征,會用配方法求其對稱軸、頂點(diǎn)坐標(biāo)公式.、對稱軸和頂點(diǎn)坐標(biāo).(1)y=2(x-3)2-5(2)y=-(x+1)2(3)y=3(x+4)2+2移得到的?【解析】1.(1)開口:向上,對稱軸:直線x=3,頂點(diǎn)坐標(biāo)(
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第1課時y=x2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn).y=x2的圖象,并能根據(jù)圖象認(rèn)識和理解二次函數(shù)y=x2的性質(zhì).y=-x2的圖象,并能比較它與y=x2的圖象的異同,初步建立二次函數(shù)表達(dá)式與圖象間的聯(lián)系.一般地,形如y=ax2+bx+c(a,b,c是常數(shù),
2025-06-15 02:59