【總結(jié)】問題引入:些位置關(guān)系?空間中直線與平面有哪(1)直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)(2)直線與平面相交——有且只有一個(gè)公共點(diǎn)(3)直線與平面平行——沒有公共點(diǎn)直線與平面平行的定義:直線與平面沒有公共點(diǎn).思考1:容易檢驗(yàn)直線與平面有無公共點(diǎn)嗎?莊子答曰:以有涯求無涯,殆矣!思考2:有一塊木料如圖,P為面
2025-06-06 00:09
【總結(jié)】:)(047)1()12(:,25)2()1(:.122RmmymxmlyxC???????????直線已知圓練習(xí);)1(相交與圓證明直線Cl.,)2(的方程直線截得的弦長最小時(shí)被圓求直線lCl題型三、最長弦、最短弦問題222430102.xyxyxy例1、圓上到直線的距離為的點(diǎn)共
2025-06-06 00:28
【總結(jié)】Oxy一艘輪船在沿直線返回港口的途中,接到氣象臺的臺風(fēng)預(yù)報(bào):臺風(fēng)中心位于輪船正西70km處,受影響的范圍是半徑長為30km的圓形區(qū)域.已知港口位于臺風(fēng)中心正北40km處,如果這艘輪船不改變航線,那么它是否會受到臺風(fēng)的影響?為解決這個(gè)問題,我們以臺風(fēng)中心為原點(diǎn)O,東西方向?yàn)閤軸,建立如圖所示的直角坐標(biāo)系,其中
2025-06-06 00:10
【總結(jié)】圓的一般方程214..222)()(rbyax????2222222rbbyyaaxx??????展開得整理得0)(2222222???????rbabyaxyx圓的標(biāo)準(zhǔn)方程可表示為一般地,022?????FEyDxyx.022確定圓的圓心和半徑思考:如何由?????FEyDxyx是否有限制?半徑的過程對參數(shù)思考:上
2025-06-05 23:39
【總結(jié)】:①設(shè)圓C1∶x2+y2+D1x+E1y+F1=0和圓C2∶x2+y2+D2x+E2y+F2=0.若兩圓相交,則過交點(diǎn)的圓系方程為x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ為參數(shù),圓系中不包括圓C2,λ=-1為兩圓的公共弦所在直線方程).若兩圓相切呢?:②
【總結(jié)】復(fù)習(xí)回顧:圓與圓的位置關(guān)系:直線與圓的位置關(guān)系:相離、相交、相切判斷直線與圓的位置關(guān)系有哪些方法?(1)根據(jù)圓心到直線的距離;(2)根據(jù)直線的方程和圓的方程組成方程組的實(shí)數(shù)解的個(gè)數(shù);相離、外切、相交、內(nèi)切、內(nèi)含設(shè)想:如果把兩個(gè)圓的圓心放在數(shù)軸上,那么兩個(gè)圓在不同的位置關(guān)系下,我們能得到哪些結(jié)論呢?(1)利用連心線長與|r1+r2|和|
【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)一、近幾年三角函數(shù)知識的變動情況三角函數(shù)一直是高中固定的傳統(tǒng)內(nèi)容,但近幾年對這部分內(nèi)容的具體要求變化較大.1998年4月21日,國家教育部專門調(diào)整了高中數(shù)學(xué)的部分教學(xué)內(nèi)容,其中的調(diào)整意見第(7)條為:“對三角函數(shù)中的和差化積、積化和差的8個(gè)公式,不要求記憶”.1998年全國高考數(shù)學(xué)卷中,已盡可能
2024-11-19 23:26
【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)(一)【學(xué)習(xí)要求】1.了解周期函數(shù)、周期、最小正周期的定義.2.會求函數(shù)y=Asin(ωx+φ)及y=Acos(ωx+φ)的周期.3.掌握函數(shù)y=sinx,y=cosx的奇偶性,會判斷簡單三角函數(shù)的奇偶性.【學(xué)法指導(dǎo)】1.在函數(shù)的周期定義中是對定義域中的每一個(gè)x值來說,對于個(gè)別的
【總結(jié)】課題正弦函數(shù)、余弦函數(shù)的性質(zhì)(二)教學(xué)目標(biāo)知識與技能掌握y=sinx,y=cosx的單調(diào)性,并能利用單調(diào)性比較大?。畷蠛瘮?shù)y=Asin(ωx+φ)及y=Acos(ωx+φ)的單調(diào)區(qū)間.過程與方法研究正弦函數(shù)的變化趨勢時(shí)首先選取這一周期
2024-11-19 20:39
【總結(jié)】課題正弦函數(shù)、余弦函數(shù)的性質(zhì)教學(xué)目標(biāo)知識與技能了解周期函數(shù)、周期、最小正周期的定義.過程與方法會求函數(shù)y=Asin(ωx+φ)及y=Acos(ωx+φ)的周期情感態(tài)度價(jià)值觀掌握函數(shù)y=sinx,y=cosx的奇偶性,會判斷簡單三角函數(shù)的奇偶性.重點(diǎn)判斷函數(shù)的奇偶性應(yīng)堅(jiān)持“
【總結(jié)】§1.4三角函數(shù)的圖像與性質(zhì)§正弦函數(shù)、余弦函數(shù)的圖象【學(xué)習(xí)目標(biāo)、細(xì)解考綱】學(xué)會“五點(diǎn)法”與“幾何法”畫正弦函數(shù)圖象,會用“五點(diǎn)法”畫余弦函數(shù)圖象.【知識梳理、雙基再現(xiàn)】1.“五點(diǎn)法”作正弦函數(shù)圖象的五個(gè)點(diǎn)是______、______、______、______、______.2.“五點(diǎn)法”作余弦函
2024-11-30 13:51
【總結(jié)】2020/12/25余弦函數(shù)圖象與性質(zhì)2020/12/25yxo1-12?23?2????2如何作出正弦函數(shù)的圖象(在精確度要求不太高時(shí))?(0,0)(,1)2?(?,0)(,-1)23?(2?,0)五點(diǎn)畫圖法五點(diǎn)法——(0,0)(,1
2024-11-18 12:10
【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)1.函數(shù)y=-cosx在區(qū)間??????-π2,π2上是()A.增函數(shù)B.減函數(shù)C.先減后增函數(shù)D.先增后減函數(shù)解析:結(jié)合函數(shù)在??????-π2,π2上的圖象可知C正確.答案:C2.已知函數(shù)y=3cos(π-x),則當(dāng)x=___________
【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)考查知識點(diǎn)及角度難易度及題號基礎(chǔ)中檔稍難三角函數(shù)的單調(diào)區(qū)間問題17三角函數(shù)的最值(值域)問題2、510、11比較大小問題39綜合問題4、68121.函數(shù)y=|sinx|的一個(gè)單調(diào)增區(qū)間是()A.??????-π4,π4
【總結(jié)】余弦函數(shù)的圖象與性質(zhì)學(xué)習(xí)目標(biāo),應(yīng)掌握余弦函數(shù)圖象的畫法.“五點(diǎn)法”畫出余弦曲線簡圖.性質(zhì)(定義域、值域、周期性、奇偶性、單調(diào)性)學(xué)法指導(dǎo):平移法:由正弦函數(shù)圖象,結(jié)合誘導(dǎo)公式,通過圖象變換,得到余弦函數(shù)的圖象.?學(xué)法指導(dǎo):,找出關(guān)鍵點(diǎn),并總結(jié)“五點(diǎn)法”作圖方法
2024-11-17 11:59