【總結(jié)】函數(shù)的奇偶性一、選擇題1.若是奇函數(shù),則其圖象關于()A.軸對稱B.軸對稱C.原點對稱D.直線對稱2.若函數(shù)是奇函數(shù),則下列坐標表示的點一定在函數(shù)圖象上的是()A.B.C.D.3.下列函數(shù)中為偶函數(shù)的是()A.B.C.D.4.如果奇函數(shù)在上是增函數(shù),且最小值是5,那么在上是()
2025-03-24 12:18
【總結(jié)】數(shù)學高中數(shù)學必修1第二章函數(shù)單調(diào)性和奇偶性專項練習一、函數(shù)單調(diào)性相關練習題1、(1)函數(shù),{0,1,2,4}的最大值為_____.(2)函數(shù)在區(qū)間[1,5]上的最大值為_____,最小值為_____.2、利用單調(diào)性的定義證明函數(shù)在(-∞,0)上是增函數(shù).3、判斷函數(shù)在(-1,+∞)上的單調(diào)性,并給予證明.4、畫出函數(shù)的圖像,并指出函數(shù)的單調(diào)區(qū)間.5、已
2025-06-22 01:09
【總結(jié)】......函數(shù)單調(diào)性、奇偶性、周期性和對稱性的綜合應用例1、設f(x)是定義在R上的奇函數(shù),且的圖象關于直線對稱,則f(1)+f(2)+f(3)+f(4)+f(5)=_0_______________.【考點分析
2025-06-16 08:18
【總結(jié)】第十二課時函數(shù)的單調(diào)性和奇偶性【學習導航】學習要求:1、熟練掌握函數(shù)單調(diào)性,并理解復合函數(shù)的單調(diào)性問題。2、熟練掌握函數(shù)奇偶性及其應用。3、學會對函數(shù)單調(diào)性,奇偶性的綜合應用?!揪浞独恳?、利用函數(shù)單調(diào)性求函數(shù)最值例1、已知函數(shù)y=f(x)對任意x,y∈R均為f(x)+f(y)=f(x+y),且當x
2024-12-05 11:37
【總結(jié)】第十二課時函數(shù)的單調(diào)性和奇偶性【學習導航】學習要求:1、熟練掌握函數(shù)單調(diào)性,并理解復合函數(shù)的單調(diào)性問題。2、熟練掌握函數(shù)奇偶性及其應用。3、學會對函數(shù)單調(diào)性,奇偶性的綜合應用?!揪浞独恳?、利用函數(shù)單調(diào)性求函數(shù)最值例1、已知函數(shù)y=f(x)對任意x,y∈R均為f(x)+f(y)=f(x+y),且當x0時,f(x)0,f(1)=-.(1
2025-06-07 23:22
【總結(jié)】函數(shù)的奇偶性y=x2-xx當x1=1,x2=--1時,f(-1)=f(1)當x1=2,x2=--2時,f(-2)=f(2)對任意x,f(-x)=f(x)xy1?偶函數(shù)定義:如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x)。那么f(x)就叫偶函數(shù)。奇函數(shù)定義:如果對于
2024-11-17 15:35
【總結(jié)】3高一數(shù)學函數(shù)練習題一、求函數(shù)的定義域1、求下列函數(shù)的定義域:⑴⑵⑶2、設函數(shù)的定義域為,則函數(shù)的定義域為___;函數(shù)的定義域為________;3、若函數(shù)的定義域為,則函數(shù)的定義域是;函數(shù)的定義域為。4、知函數(shù)的定義域為,且函數(shù)的定義域存在,求實數(shù)的取值范圍。
2025-03-25 02:03
【總結(jié)】函數(shù)的基本性質(zhì)——奇偶性1.在初中學習的軸對稱圖形和中心對稱圖形的定義是什么?復習回顧2.請分別畫出函數(shù)f(x)=x3與g(x)=x2的圖象.1.在初中學習的軸對稱圖形和中心對稱圖形的定義是什么?復習回顧1.奇函數(shù)、偶函數(shù)的定義講授新課1.奇函數(shù)、偶函數(shù)的定義奇函數(shù):
2024-12-07 16:39
【總結(jié)】函數(shù)的奇偶性南京市三十九中學xyO如何用數(shù)學語言表述函數(shù)圖象關于y軸對稱呢?y=f(x)函數(shù)圖象關于y軸對稱.1xyOyxOxO1yxyOy=f(x)A(x0,f(x0))點A關于y軸的對稱點A’的坐標是_
2024-11-17 15:06
2024-11-18 13:34
【總結(jié)】(1)函數(shù)的奇偶性【教學目標】;;;【教學重難點】教學重點:函數(shù)的奇偶性及其幾何意義教學難點:判斷函數(shù)的奇偶性的方法與格式【教學過程】“對稱”是大自然的一種美,這種“對稱美”在數(shù)學中也有大量的反映,讓我們看看下列各函數(shù)有什么共性?提出問題①如圖所示,觀察下列函數(shù)的圖象,總結(jié)各
2025-04-16 22:21
【總結(jié)】奇偶性第1課時函數(shù)奇偶性的概念故宮殿堂建筑整齊對稱,相映成趣,給人以穩(wěn)重、博大、端莊的感覺!數(shù)學上有對稱的函數(shù)圖象嗎?它們體現(xiàn)了函數(shù)的什么性質(zhì)?一起讓我們來學習這個性質(zhì)吧!.(難點).(重點、難點)、偶函數(shù)的圖象的對稱性.已知函數(shù)f(x)=x2,求f(0),f(-1),f(1),f(-2),f(2)
2025-03-22 06:45
【總結(jié)】......抽象函數(shù)的對稱性、奇偶性與周期性一、典例分析,當時,,則等于()(A);(B);(C);(D).例2.已知是定義在實數(shù)集上的函數(shù),且,求
2025-07-27 14:56
【總結(jié)】xy0觀察下圖,思考并討論以下問題:(1)這兩個函數(shù)圖象有什么共同特征嗎?(2)相應的兩個函數(shù)值對應表是如何體現(xiàn)這些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)f(-2)=2=f(2)f(-1)=1=f(1)f(x)=x2f(x)
2024-11-17 07:49
【總結(jié)】難點8關于奇偶性與單調(diào)性(二)函數(shù)的單調(diào)性、奇偶性是高考的重點和熱點內(nèi)容之一,,掌握基本方法,形成應用意識.●難點磁場(★★★★★)已知偶函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.●案例探究[例1]已知奇函數(shù)f(x)是定義在(-3,3)上的減函數(shù),且滿足不等式f(x-3)+f(x2-3)0,設不等式解
2025-04-04 05:16