【總結(jié)】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對(duì)稱性)abba???(2)
2025-07-24 19:51
【總結(jié)】不等式與不等式組綜合檢測(cè)題一、選擇題1,若-a>a,則a必為()2,已知a<0,-1<b<0,則a,ab,ab2之間的大小關(guān)系是()>ab>ab2>ab2>a>a>ab2D.ab<a<ab23,(
2024-11-12 02:11
【總結(jié)】第三章不等式不等關(guān)系不等關(guān)系與不等式課時(shí)目標(biāo).,并能運(yùn)用這些性質(zhì)解決有關(guān)問題.1.比較實(shí)數(shù)a,b的大小(1)文字?jǐn)⑹鋈绻鸻-b是正數(shù),那么a____b;如果a-b等于____,那么a=b;如果a-b是負(fù)數(shù),那么a____b,反之也成立.(2)符號(hào)表示
2024-12-05 06:34
【總結(jié)】不等式與不等式組教材分析本章的主要內(nèi)容包括:一元一次不等式(組)及其相關(guān)概念,不等式的性質(zhì),一元一次不等式(組)的解法及其解集的幾何表示,利用一元一次不等式(組)分析與解決實(shí)際問題.其中,以不等式(組)為工具分析問題、解決問題是重點(diǎn),也是教學(xué)中的主要難點(diǎn);一元一次不等式(組)及其相關(guān)概念、不等式的性質(zhì)是基礎(chǔ)知識(shí);掌握一元一次不等式(組)的解法及解集
2025-07-18 00:29
【總結(jié)】精品資源不等式與不等式組復(fù)習(xí)課一、不等式及一元一次不等式概念判斷下列不等式哪些是一元一次不等式,哪些不是?1、2、3、4、5、二、不等式的性質(zhì)(用符號(hào)語言來表示)1、若①②③④2、若三、解下列一元一次不等式并將解集在數(shù)軸上表示。①
2025-04-16 12:51
【總結(jié)】不等式與不等式典型例題例320xxm??????有解,則m的取值范圍是:。010axx???????無解,則a的取值范圍是:。例202350xabxab?????????的解集為-1x&
2025-07-23 23:04
【總結(jié)】第二十講不等式與不等式組,并把解在數(shù)軸上表示出來.61232???xx1325??x<⑴⑵3x+5>5(x-1)356634xx???①②3x-m≤0的正整數(shù)解是1,2,3,求m的取值范圍.x的不等式組x-a≥
2024-11-19 12:04
【總結(jié)】專題五一元一次方程復(fù)習(xí)目的:1、了解等式的概念,掌握等式的基本性質(zhì)。2、了解方程、方程的解及解方程的概念。3、了解一元一次方程,二元一次方程組及其標(biāo)準(zhǔn)形式、最簡(jiǎn)形式。4、會(huì)列一元一次方程解應(yīng)用題,并根據(jù)應(yīng)用題的實(shí)際意義檢驗(yàn)求值是否合理。5、能正確地列二元一次方程組解應(yīng)用題??键c(diǎn)透視考點(diǎn)課標(biāo)要求知識(shí)與技能目標(biāo)了解理解掌握靈
2025-08-05 08:15
【總結(jié)】精品資源不等式與不等式組單元測(cè)試班級(jí)姓名座號(hào)成績(jī)一、選擇題(每小題5分,共30分)1、若mn,則下列不等式中成立的是()A、m+ana2D、a-ma-n2、不等式的負(fù)整數(shù)解的個(gè)數(shù)為()A、0個(gè)
2025-03-24 05:47
【總結(jié)】精品資源不等式與不等式組(時(shí)間:45分鐘滿分:100分)姓名歡迎下載一、選擇題(每小題5分,共30分)1.若m>n,則下列不等式中成立的是()A.m+a<n+bB.ma<nbC.ma2>na2D.a(chǎn)m<an2.不等式4(x2)>2(3x+5)的非負(fù)整數(shù)解的個(gè)
2025-06-29 17:09
【總結(jié)】不等式和不等式組錢旭東淮安市啟明外國(guó)語學(xué)校蘇科版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書九年級(jí)復(fù)習(xí)課回顧·知識(shí)一元一次不等式(組)的應(yīng)用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識(shí):含
2025-10-03 13:38
【總結(jié)】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【總結(jié)】12不等式的定義:用不等號(hào)連接兩個(gè)解析式所得的式子,叫做不等式.說明:(1)不等號(hào)的種類:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代數(shù)式和超越式(包括指數(shù)式、對(duì)數(shù)式和三角式等)(3)不等式研究的范圍是實(shí)數(shù)集R.3對(duì)于任意兩個(gè)實(shí)數(shù)a、b,在a>b,a=b,a
2024-11-17 19:45
【總結(jié)】
2024-11-12 16:46
【總結(jié)】.......初二數(shù)學(xué)不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>
2025-03-25 07:46