【總結】第一篇:平面向量的應用 平面向量的應用 平面向量是一個解決數學問題的很好工具,它具有良好的運算和清晰的幾何意義。在數學的各個分支和相關學科中有著廣泛的應用。下面舉例說明。 一、用向量證明平面幾何...
2025-11-06 03:33
【總結】第三節(jié)平面向量的數量積及平面向量的應用舉例基礎梳理(1)定義已知兩個向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時,夾角θ=
2025-11-03 16:44
【總結】......平面向量題型歸納一.向量有關概念:【任何時候寫向量時都要帶箭頭】1.向量的概念:既有大小又有方向的量,記作:或。注意向量和數量的區(qū)別。向量常用有向線段來表示,注意不能說向量就是有向線段,為什么?(向量可以平移)。例:已知A
2025-03-25 01:23
【總結】第一篇:《平面向量的加法教案》 《平面向量的加法》教案 課題名稱:平面向量的加法 教材版本:蘇教版《中職數學基礎模塊*下冊》年級:高一 撰寫教師:徐艷 一、理解課程要求 教材分析: (1...
2025-11-07 01:56
【總結】第五章檢測題一、選擇題:,下列結論正確的是A.|a|+|b|=|a+b| B.|a|-|b|=|a-b|C.|a|+|b|>|a+b| D.|a|+|b|≥|a+b|解析:在三角形中,兩邊之和大于第三邊,當a與b同向時,取“=”號.答案:D,,且||=||,那么四邊形ABCD為A.平行四邊形 B.菱形C.長方形
2025-08-04 16:18
【總結】向量的減法baOaaaaaaaabbbbbbbBbaAa+b一、復習:1.向量加法法則:三角形法則baAaaaaaaaabbbBbaDaCba+b平行四邊形法則
2025-08-15 21:42
【總結】ABC(2)飛機從A到B,再改變方向從B到C,則兩次的位移的和應是:ABC(3)船的速度為,水流的速度為,則兩個速度的和是:ABC由此得什么結論?(1)一人從A到
2025-07-23 07:21
【總結】第一節(jié)平面向量的概念及其線性運算1.向量的有關概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:長度為0的向量,其方向是任意的.(3)單位向量:長度等于1個單位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共線向量,規(guī)定:0與任一向量共線.(5)相等向量:長度相等且方向相同的向量.(6)相反向量:長度相等且方向相反的向量.
2025-04-16 23:06
【總結】平面向量基礎題一、高考真題體驗1.(2015新課標卷I)已知點,向量,則向量()(A)(B)(C)(D)2.(2015新課標卷II)已知,,則()A.B.C.D.3.(2014新課標卷I)設分別為的三邊的中點,則A.B.C.D.二、知識清單訓練【平
2025-03-25 01:22
【總結】平面向量經典例題:1.已知向量a=(1,2),b=(2,0),若向量λa+b與向量c=(1,-2)共線,則實數λ等于( )A.-2 B.-C.-1 D.-[答案] C[解析] λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b與c共線,∴-2(2+λ)-2λ=0,∴λ=-1.2.(文)已知向量a=(,1),b=(0,1),c=(k
【總結】平面向量的實際背景及基本概念平面向量的線性運算——教材解讀山東劉乃東一、要點精講1.向量的有關概念(1)向量:既有大小又有方向的量叫向量,一般用,,,…來表示,或用有向線段的起點與終點的大寫字母表示,如。向量的大小,即向量的模(長度),記作。注:向量與數量不同,數量之間可以比較大小,而兩個向量不能比較大小。(2)零向量:長度為零的向量
2025-08-21 16:13
【總結】平面向量寶雞石油中學萬小進評價優(yōu)良達標待達標等次本試題分為第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,考試結束后,只將第Ⅱ卷和答題卡一并交回。參考公式:將點按向量平移后得點,則第Ⅰ卷(選擇題部分共40分)注意事項:1.答第Ⅰ卷時,考生務必將姓名、準考號、考試科目用鉛
2025-08-01 20:39
【總結】中考數學平面向量 初中數學知識點:平面向量 向量的定義: 既有方向又有大小的量叫做向量。 向量的表示: 具有方向的線段叫做有向線段,以A為起點,B為終點的有向線段記作...
2024-12-06 03:06
【總結】平面向量的概念及線性運算A組 專項基礎訓練一、選擇題(每小題5分,共20分)1.給出下列命題:①兩個具有公共終點的向量,一定是共線向量;②兩個向量不能比較大小,但它們的模能比較大小;③λa=0(λ為實數),則λ必為零;④λ,μ為實數,若λa=μb,則a與b共線.其中錯誤命題的個數為 ( )A.1 B.2 C.3 D.4
【總結】::CBAABCD一.向量的加法:首尾相接共同起點ab?ab?aabbbab二.向量的減法:BADab?a共同起點指向被減數溫故知新1.當時:0??2.當時:0
2025-08-15 23:54