freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

數(shù)學建模個人認識和心得體會(已修改)

2025-04-19 02:42 本頁面
 

【正文】 數(shù)學建模的體會思考經(jīng)過這段時間的學習,了解了更多的關(guān)于這門學科的知識,可以說是見識了很多很多,作為一個數(shù)學系的學生,一直都有一個疑問,數(shù)學的應(yīng)用在那里。對了,就在這里,在這里,我看到了很多,也學到了很多,關(guān)于各個學科,各個領(lǐng)域,都少不了數(shù)學,都是用建模的思想,來解決實際問題,很神奇。數(shù)學建模給了我很多的感觸:它所教給我們的不單是一些數(shù)學方面的知識,更多的其實是綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)?、多角度考慮問題的能力,使我們的邏輯推理能力和量化分析能力得到很好的鍛煉和提高。它還讓我了解了多種數(shù)學軟件,以及運用數(shù)學軟件對模型進行求解。數(shù)學模型主要是將現(xiàn)實對象的信息加以翻譯,歸納的產(chǎn)物。通過對數(shù)學模型的假設(shè)、求解、驗證,得到數(shù)學上的解答,再經(jīng)過翻譯回到現(xiàn)實對象,給出分析、決策的結(jié)果。其實,數(shù)學建模對我們來說并不陌生,在我們的日常生活和工作中,經(jīng)常會用到有關(guān)建模的概念。例如,我們平時出遠門,會考慮一下出行的路線,以達到既快速又經(jīng)濟的目的;一些廠長經(jīng)理為了獲得更大的利潤,往往會策劃出一個合理安排生產(chǎn)和銷售的最優(yōu)方案……這些問題和建模都有著很大的聯(lián)系。而在學習數(shù)學建模訓練以前,我們面對這些問題時,解決它的方法往往是一種習慣性的思維方式,只知道該這樣做,卻不很清楚為什么會這樣做,現(xiàn)在,我們這種陳舊的思考方式己經(jīng)在被數(shù)學建模訓練中培養(yǎng)出的多角度、層次分明、從本質(zhì)上區(qū)分問題的新穎多維的思考方式所替代。這種凝聚了許多優(yōu)秀方法為一體的思考方式一旦被你把握,它就轉(zhuǎn)化成了你自身的素質(zhì),不僅在你以后的學習工作中繼續(xù)發(fā)揮作用,也為你的成長道路印下了閃亮的一頁。數(shù)學建模所要解決的問題決不是單一學科問題,它除了要求我們有扎實的數(shù)學知識外,還需要我們不停地去學習和查閱資料,除了我們要學習許多數(shù)學分支問題外,還要了解工廠生產(chǎn)、經(jīng)濟投資、保險事業(yè)等方面的知識,這些知識決不是任何專業(yè)中都能涉獵得到的。它能極大地拓寬和豐富我們的內(nèi)涵,讓我們感到了知識的重要性,也領(lǐng)悟到了“學習是不斷發(fā)現(xiàn)真理的過程”這句話的真諦所在,這些知識必將為我們將來的學習工作打下堅實的基礎(chǔ)。從現(xiàn)在我們的學習來看,我們都是直接受益者。就拿數(shù)學建模比賽寫的論文來說。原本以為這是一件很簡單的事,但做起來才發(fā)覺事情并沒有想象中的簡單。因為要解決問題,憑我們現(xiàn)有的知識根本不夠。于是,自己必須要充分利用圖書館和網(wǎng)絡(luò)的作用,查閱各種有關(guān)資料,以盡量獲得比較全面的知識和信息。在這過程中,對自己眼界的開闊,知識的擴展無疑大有好處,各學科的交叉滲透更有利于自己提高解決復雜問題的能力。毫不夸張的說,建模過程挖掘了我們的潛能,使我們對自己的能力有了新的認識,特別是自學能力得到了極大的提高,而且思想的交鋒也迸發(fā)出了智慧的火花,從而增加了繼續(xù)深入學習數(shù)學的主動性和積極性。再次,數(shù)學建模也培養(yǎng)了我們的概括力和想象力,也就是要一眼就能抓住問題的本質(zhì)所在。我們只有先對實際問題進行概括歸納,同時在允許的情況下盡量忽略各種次要因素,緊緊抓住問題的本質(zhì)方面,使問題盡可能簡單化,這樣才能解決問題。其實,在我們做論文之前,考慮到的因素有很多,如果把這一系列因數(shù)都考慮的話,將會花費更多的時間和精神。因此,在我們考慮一些因素并不是本質(zhì)問題的時候,我就將這些因數(shù)做了假設(shè)以及在模型的推廣時才考慮。這就使模型更加合理和理想。數(shù)學建模還能增強我們的抽象能力以及想象力。對實際問題再進行“翻譯”,即進行抽象,要用我們熟悉的數(shù)學語言、數(shù)學符號和數(shù)學公式將它們準確的表達出來。下面用一個具體的實例,來介紹建模的具體應(yīng)用:傳染病問題的研究一﹑模型假設(shè)、死亡、流動等種群動力因素。總?cè)丝跀?shù)N(t)不變,人口始終保持一個常數(shù)N。人群分為以下三類:易感染者(Susceptibles),其數(shù)量比例記為s(t),表示t時刻未染病但有可能被該類疾病傳染的人數(shù)占總?cè)藬?shù)的比例;感染病者(Infectives),其數(shù)量比例記為i(t),表示t時刻已被感染成為病人而且具有傳染力的人數(shù)占總?cè)藬?shù)的比例;恢復者(Recovered),其數(shù)量比例記為r(t),表示t時刻已從染病者中移出的人數(shù)(這部分人既非已感染者,也非感染病者,不具有傳染性,也不會再次被感染,他們已退出該傳染系統(tǒng)。)占總?cè)藬?shù)的比例。(每個病人每天有效接觸的平均人數(shù))為常數(shù)λ,日治愈率(每天被治愈的病人占總病人數(shù)的比例)為常數(shù)μ,顯然平均傳染期為1/μ,傳染期接觸數(shù)為σ=λ/μ。該模型的缺陷是結(jié)果常與實際有一定程度差距,這是因為模型中假設(shè)有效接觸率傳染力是不變的。二﹑模型構(gòu)成在以上三個基本假設(shè)條件下,易感染者從患病到移出的過程框圖表示如下:siλsirμi在假設(shè)1中顯然有:s(t) + i(t) + r(t) = 1對于病愈免疫的移出者的數(shù)量應(yīng)為不妨設(shè)初始時刻的易感染者,染病者,恢復者的比例分別為(>0),(>0),=0.SIR基礎(chǔ)模型用微分方程組表示如下:s(t) , i(t)的求解極度困難,在此我們先做數(shù)值計算來預估計s(t) , i(t)的一般變化規(guī)律。三﹑數(shù)值計算在方程(3)中設(shè)λ=1,μ=,i(0)= ,s(0)=,用MATLAB軟件編程:function y=ill(t,x)a=1。b=。y=[a*x(1)*x(2)b*x(1)。a*x(1)*x(2)]。ts=0:50。x0=[,]。[t,x]=ode45(39。ill39。,ts,x0)。 四﹑相軌線分析我們在數(shù)值計算和圖形觀察的基礎(chǔ)上,利用相軌線討論解i(t),s(t)的性質(zhì)。D = {(s,i)| s≥0,i≥0 , s + i ≤1}在方程(3)中消去并注意到σ的定義,可得 (5)所以: (6)利用積分特性容易求出方程(5)的解為: (7)在定義域D內(nèi),(6)式表示的曲線即為相軌線,(t)和i(t)的變化趨向下面根據(jù)(3),(17)式和圖9分析s(t),i(t)和r(t)的變化情況(t→∞時它們的極限值分別記作, 和).1. 不論初始條件s0,i0如何,病人消失將消失,即: ,在(7)式中令i=0得到, 是方程在(0,1/σ) 是相軌線與s軸在(0,1/σ)內(nèi)交點的橫坐標1/σ,則開始有,i(t)先增加,
點擊復制文檔內(nèi)容
數(shù)學相關(guān)推薦
文庫吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號-1