freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

第9-12課時不等式問題的題型與方法(已修改)

2025-04-06 06:48 本頁面
 

【正文】 精品資源第9-12課時課題:不等式問題的題型與方法一.復(fù)習(xí)目標(biāo):1.在熟練掌握一元一次不等式(組)、一元二次不等式的解法基礎(chǔ)上,掌握其它的一些簡單不等式的解法.通過不等式解法的復(fù)習(xí),提高學(xué)生分析問題、解決問題的能力以及計算能力;2.掌握解不等式的基本思路,即將分式不等式、絕對值不等式等不等式,化歸為整式不等式(組),會用分類、換元、數(shù)形結(jié)合的方法解不等式;3.通過復(fù)習(xí)不等式的性質(zhì)及常用的證明方法(比較法、分析法、綜合法、數(shù)學(xué)歸納法等),使學(xué)生較靈活的運用常規(guī)方法(即通性通法)證明不等式的有關(guān)問題;4.通過證明不等式的過程,培養(yǎng)自覺運用數(shù)形結(jié)合、函數(shù)等基本數(shù)學(xué)思想方法證明不等式的能力;5.能較靈活的應(yīng)用不等式的基本知識、基本方法,解決有關(guān)不等式的問題. 6.通過不等式的基本知識、基本方法在代數(shù)、三角函數(shù)、數(shù)列、復(fù)數(shù)、立體幾何、解析幾何等各部分知識中的應(yīng)用,深化數(shù)學(xué)知識間的融匯貫通,從而提高分析問題解決問題的能力.在應(yīng)用不等式的基本知識、方法、思想解決問題的過程中,提高學(xué)生數(shù)學(xué)素質(zhì)及創(chuàng)新意識..二.考試要求:1.理解不等式的性質(zhì)及其證明。2.掌握兩個(不擴(kuò)展到三個)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的定理,并會簡單的應(yīng)用。3.掌握分析法、綜合法、比較法證明簡單的不等式。4.掌握簡單不等式的解法。5.理解不等式|a||b|≤|a+b|≤|a|+|b|。三.教學(xué)過程:(Ⅰ)基礎(chǔ)知識詳析1.解不等式的核心問題是不等式的同解變形,不等式的性質(zhì)則是不等式變形的理論依據(jù),方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解法密切相關(guān),要善于把它們有機(jī)地聯(lián)系起來,互相轉(zhuǎn)化.在解不等式中,換元法和圖解法是常用的技巧之一.通過換元,可將較復(fù)雜的不等式化歸為較簡單的或基本不等式,通過構(gòu)造函數(shù)、數(shù)形結(jié)合,則可將不等式的解化歸為直觀、形象的圖形關(guān)系,對含有參數(shù)的不等式,運用圖解法可以使得分類標(biāo)準(zhǔn)明晰.2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基礎(chǔ),利用不等式的性質(zhì)及函數(shù)的單調(diào)性,將分式不等式、絕對值不等式等化歸為整式不等式(組)是解不等式的基本思想,分類、換元、數(shù)形結(jié)合是解不等式的常用方法.方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解密切相關(guān),要善于把它們有機(jī)地聯(lián)系起來,相互轉(zhuǎn)化和相互變用.3.在不等式的求解中,換元法和圖解法是常用的技巧之一,通過換元,可將較復(fù)雜的不等式化歸為較簡單的或基本不等式,通過構(gòu)造函數(shù),將不等式的解化歸為直觀、形象的圖象關(guān)系,對含有參數(shù)的不等式,運用圖解法,可以使分類標(biāo)準(zhǔn)更加明晰.通過復(fù)習(xí),感悟到不等式的核心問題是不等式的同解變形,能否正確的得到不等式的解集,不等式同解變形的理論起了重要的作用.4.比較法是不等式證明中最基本、也是最常用的方法,比較法的一般步驟是:作差(商)→變形→判斷符號(值). 5.證明不等式的方法靈活多樣,內(nèi)容豐富、技巧性較強(qiáng),這對發(fā)展分析綜合能力、正逆思維等,將會起到很好的促進(jìn)作用.在證明不等式前,要依據(jù)題設(shè)和待證不等式的結(jié)構(gòu)特點、內(nèi)在聯(lián)系,選擇適當(dāng)?shù)淖C明方法.通過等式或不等式的運算,將待證的不等式化為明顯的、熟知的不等式,從而使原不等式得到證明;反之亦可從明顯的、熟知的不等式入手,經(jīng)過一系列的運算而導(dǎo)出待證的不等式,前者是“執(zhí)果索因”,后者是“由因?qū)Ч?,為溝通?lián)系的途徑,證明時往往聯(lián)合使用分析綜合法,兩面夾擊,相輔相成,達(dá)到欲證的目的.6.證明不等式的方法靈活多樣,但比較法、綜合法、分析法和數(shù)學(xué)歸納法仍是證明不等式的基本方法.要依據(jù)題設(shè)、題斷的結(jié)構(gòu)特點、內(nèi)在聯(lián)系,選擇適當(dāng)?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應(yīng)的步驟,技巧和語言特點.7.不等式這部分知識,滲透在中學(xué)數(shù)學(xué)各個分支中,有著十分廣泛的應(yīng)用.因此不等式應(yīng)用問題體現(xiàn)了一定的綜合性、靈活多樣性,這對同學(xué)們將所學(xué)數(shù)學(xué)各部分知識融會貫通,起到了很好的促進(jìn)作用.在解決問題時,要依據(jù)題設(shè)、題斷的結(jié)構(gòu)特點、內(nèi)在聯(lián)系、選擇適當(dāng)?shù)慕鉀Q方案,最終歸結(jié)為不等式的求解或證明.不等式的應(yīng)用范圍十分廣泛,它始終貫串在整個中學(xué)數(shù)學(xué)之中.諸如集合問題,方程(組)的解的討論,函數(shù)單調(diào)性的研究,函數(shù)定義域的確定,三角、數(shù)列、復(fù)數(shù)、立體幾何、解析幾何中的最大值、最小值問題,無一不與不等式有著密切的聯(lián)系,許多問題,最終都可歸結(jié)為不等式的求解或證明。8.不等式應(yīng)用問題體現(xiàn)了一定的綜合性.這類問題大致可以分為兩類:一類是建立不等式、解不等式;另一類是建立函數(shù)式求最大值或最小值.利用平均值不等式求函數(shù)的最值時,要特別注意“正數(shù)、定值和相等”三個條件缺一不可,有時需要適當(dāng)拼湊,使之符合這三個條件.利用不等式解應(yīng)用題的基本步驟:10審題,20建立不等式模型,30解數(shù)學(xué)問題,40作答。9.注意事項:⑴解不等式的基本思想是轉(zhuǎn)化、化歸,一般都轉(zhuǎn)化為最簡單的一元一次不等式(組)或一元二次不等式(組)來求解。⑵解含參數(shù)不等式時,要特別注意數(shù)形結(jié)合思想,函數(shù)與方程思想,分類討論思想的錄活運用。⑶不等式證明方法有多種,既要注意到各種證法的適用范圍,又要注意在掌握常規(guī)證法的基礎(chǔ)上,選用一些特殊技巧。如運用放縮法證明不等式時要注意調(diào)整放縮的度
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號-1