freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

外文翻譯----led照明知識:pwm調光(已修改)

2025-01-29 23:26 本頁面
 

【正文】 附錄AA matter of light:PWM dimming By Sameh Sarhan and Chris Richardson, National Semiconductor Whether you drive LEDs with a buck, boost, buckboost or linear regulator, the mon thread is drive circuitry to control the light output. A few applications are as simple as ON and OFF, but the greater number of applications call for dimming the output between zero and 100 percent, often with fine resolution. The designer has two main choices: adjust the LED current linearly (analog dimming), or use switching circuitry that works at a frequency high enough for the eye to average the light output (digital dimming). Using pulsewidth modulation (PWM) to set the period and duty cycle (Fig. 1) is perhaps the easiest way to acplish digital dimming, and a buck regulator topology will often provide the best peRFormance. Figure 1: LED driver using PWM dimming, with waveforms.PWM dimming preferred Analog dimming is often simpler to implement. We vary the output of the LED driver in proportion to a control voltage. Analog dimming introduces no new frequencies as potential sources of EMC/EMI. However, PWM dimming is used in most designs, owing to a fundamental property of LEDs: the character of the light emitted shifts in proportion to the average drive current. For monochromatic LEDs, the dominant wavELength changes. For white LEDs, the correlated color temperature (CCT) changes. It39。s difficult for the human eye to detect a change of a few nanometers in a red, green, or blue LED, especially when the light intensity is also changing. A change in color temperature of white light, however, is easily detected. Most white LEDs consist of a die that emits photons in the blue spectrum, which strike a phosphor coating that in turn emits photons over a broad range of visible light. At low currents the phosphor dominates and the light tends to be more yellow. At high currents the blue emission of the LED dominates, giving the light a blue cast, leading to a higher CCT. In applications with more than one white LED, a difference in CCT between two adjacent LEDs can be both obvious and unpleasant. That concept extends to light sources that blend light from multiple monochromatic LEDs. When we have more than one light source, any difference between them jars the senses. LED manufacturers specify a certain drive current in the electrical characteristics tables of their products, and they guarantee the dominant wavelength or CCT only at those specified currents. Dimming with PWM ensures that the LEDs emit the color that the lighting designer needs, regardless of the intensity. Such precise control is particularly important in RGB applications where we blend light of different colors to produce white. From the driver IC perspective, analog dimming presents a serious challenge to the output current accuracy. Almost every LED driver uses a resistor of some type in series with the output to sense current. The currentsense voltage, VSNS, is selected as a promise to maintain low Power dissipation while keeping a high signaltonoise ratio (SNR). Tolerances, offsets, and delays in the driver introduce an error that remains relatively fixed. To reduce output current in a closedloop system, VSNS, must be reduced. That in turn reduces the output cur
點擊復制文檔內容
公司管理相關推薦
文庫吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號-1