【正文】
ig. 1) is perhaps the easiest way to acplish digital dimming, and a buck regulator topology will often provide the best peRFormance. Figure 1: LED driver using PWM dimming, with waveforms.PWM dimming preferred Analog dimming is often simpler to implement. We vary the output of the LED driver in proportion to a control voltage. Analog dimming introduces no new frequencies as potential sources of EMC/EMI. However, PWM dimming is used in most designs, owing to a fundamental property of LEDs: the character of the light emitted shifts in proportion to the average drive current. For monochromatic LEDs, the dominant wavELength changes. For white LEDs, the correlated color temperature (CCT) changes. It39。模擬調(diào)光不會(huì)引入潛在的電磁兼容/電磁干擾(EMC/EMI)頻率。幾乎每個(gè)LED驅(qū)動(dòng)都要用到某種串聯(lián)電阻來辨別電流。在機(jī)器視覺和工業(yè)檢驗(yàn)應(yīng)用中常常需要更高的PWM調(diào)光頻率,因?yàn)楦咚傧鄼C(jī)和傳感器需要遠(yuǎn)遠(yuǎn)快于人眼的反應(yīng)時(shí)間。Cuk和zeta轉(zhuǎn)換器可以提供持續(xù)的輸出電感,但是當(dāng)更慢的控制環(huán)(和慢頻)被納入其中的時(shí)候,它們會(huì)落后。這是因?yàn)樵诔掷m(xù)傳導(dǎo)模式中(CCM),每個(gè)調(diào)節(jié)器都展示了一個(gè)右半平面零,這就使它很難達(dá)到時(shí)鐘調(diào)節(jié)器需要的高控制環(huán)帶寬。如果調(diào)光頻率必須很高或者信號(hào)轉(zhuǎn)換率必須很快,或者二者都需要,那么Buck調(diào)節(jié)器就是最好的選擇。另外,Boost調(diào)節(jié)器不允許輸出電壓下降到輸入電壓以下。這些應(yīng)用需要高PWM調(diào)光頻率和高對(duì)比度,這就分別需要快速信號(hào)轉(zhuǎn)換率和短延遲時(shí)間。用開關(guān)調(diào)節(jié)器調(diào)光 基于開關(guān)調(diào)節(jié)器的LED驅(qū)動(dòng)需要一些特別考慮,以便于每秒鐘關(guān)掉和開啟成百上千次。驅(qū)動(dòng)中的容差、偏移和延遲導(dǎo)致了一個(gè)相對(duì)固定的誤差。對(duì)于單色LED來說,其主波長會(huì)改變。s finite response time to a PWM dimming signal creates design issues. There are three main types of delay (Fig. 2). The longer these delays, the lower the achievable contrast ratio (a measure of control over lighting intensity). Figure 2: Dimming delays. As shown, tn represents the propagation delay from the time logic signal VDIM goes high to the time that the LED driver begins to increase the output current. In addition, tsu is the time needed for the output current to slew from zero to the target level, and tsn is the time needed for the output current to slew from the target level back down to zero. In general, the lower the dimming frequency, fDIM, the higher contrast ratio, as these fixed delays consume a smaller portion of the dimming period, lower limit for fDIM is approximately 120 Hz, below which the eye no longer blends the pulses into a perceived continuous light. The upper limit is determined by the minimum contrast ratio that is required. Contrast ratio is typically expressed as the inverse of the minimum ontime, ., CR = 1 / tONMIN : 1 where tONMIN = tD + tSU. Applications in machine vision and industrial inspection often require much higher PWM dimming frequencies because the highspeed cameras and sensors used respond much more quickly than the human eye. In such applications the goal of rapid turnon and turnoff of the LED light source is not to reduce the average light output, but to synchronize the light output with the sensor or camera capture times. Dimming with a switching regulator Switching regulatorbased LED drivers require special consideration in order to be shut off and turned on at hundreds or thousands of times per second. Regulators designed for standard power supplies often have an enable pin or shutdown pin to which a logiclevel PWM signal can be applied, but the associated delay, tD, is often quite long. This is because the silicon design emphasizes low shutdown current over response time. Dedicated switching regulations for driving LEDs will do the opposite, keeping their internal control circuits active while the enable pin is logic low to minimize tD,