【總結(jié)】第二章行列式行列式在線性代數(shù)中是一個(gè)有用的工具,利用它不僅可以表述n階矩陣為可逆矩陣的條件;而且可導(dǎo)出逆矩陣公式及著名的克拉默法則。本章在二三階行列式定義的基礎(chǔ)上,歸納出一般n階行列式的定義,然后討論行列式的基本性質(zhì)及其應(yīng)用。用消元法解二元線性方程組一、二階行列式的引入方程組的解為由方程組的四
2025-01-19 10:01
【總結(jié)】行列式的性質(zhì)?行列式的性質(zhì)?余子式與代數(shù)余子式?行列式按行(列)展開法則一、行列式的性質(zhì)性質(zhì)1行列式與它的轉(zhuǎn)置行列式相等.行列式稱為行列式的轉(zhuǎn)置行列式.TDD記nnaaa?2211???nnaaa2112??21
2025-01-19 19:05
【總結(jié)】線性代數(shù)教學(xué)改革李尚志教授中國(guó)科學(xué)技術(shù)大學(xué)數(shù)學(xué)系空間為體,矩陣為用?研究對(duì)象幾何:線性空間(向量)?研究工具代數(shù):矩陣運(yùn)算?向量(問題)modeling?矩陣語言描述?矩陣運(yùn)算解決?
2025-07-21 04:22
【總結(jié)】向量組的秩向量組的極大線性無關(guān)組與秩歐氏空間向量空間的基維數(shù)坐標(biāo)基變換與坐標(biāo)變換北京科技大學(xué)《線性代數(shù)》課程組012:,,,rA???線性無關(guān)向量組,定義簡(jiǎn)稱為極大無關(guān)組或最大無關(guān)組.12,,,r???若向量組A的一個(gè)部分組A0:滿足(1)
2025-02-21 12:43
【總結(jié)】第一篇:線性代數(shù)教案 第一章 線性方程組的消元法與矩陣的初等變換 教學(xué)目標(biāo)與要求 教學(xué)重點(diǎn) 運(yùn)用矩陣的初等變換解一般的線性方程組教學(xué)難點(diǎn) 矩陣的初等變換 §線性方程組的基本概念 一...
2024-10-29 06:22
【總結(jié)】第一篇:線性代數(shù)試卷 廈門理工學(xué)院繼續(xù)教育學(xué)院20第學(xué)期期末試卷 線性代數(shù)(考試時(shí)間:120分鐘) 專業(yè)姓名層次形式成績(jī) 一、選擇題(每小題4分,共16分),B為三階方陣,矩陣X滿足AXA-B...
2024-11-19 03:14
【總結(jié)】第三章矩陣的初等變換與線性方程組知識(shí)點(diǎn)回顧:克拉默法則結(jié)論1如果線性方程組(1)的系數(shù)行列式不等于零,則該線性方程組一定有解,而且解是唯一的.(P.24定理4)結(jié)論1′如果線性方程組無解或有兩個(gè)不同的解,則它的系數(shù)行列式必為零.(4')設(shè)11112211211222
2025-01-19 15:17
【總結(jié)】?歡迎您來到《線性代數(shù)》實(shí)驗(yàn)室!?在這里,抽象的數(shù)學(xué)已經(jīng)成為一門生動(dòng)的“實(shí)驗(yàn)科學(xué)”,從實(shí)際問題出發(fā),借助計(jì)算機(jī),你可以親自設(shè)計(jì)、親自動(dòng)手,去體驗(yàn)解決問題的過程,從實(shí)驗(yàn)中去學(xué)習(xí)、探索和發(fā)現(xiàn)數(shù)學(xué)規(guī)律。線性代數(shù)實(shí)驗(yàn)課南通職業(yè)大學(xué)基礎(chǔ)課部2021年10月課程目錄?實(shí)驗(yàn)一第一章
2025-05-15 22:03
【總結(jié)】第一篇:線性代數(shù)試卷 線性代數(shù)試題 請(qǐng)考生按規(guī)定用筆將所有試題的答案涂、寫在答題紙上。 說明:在本卷中,AT表示矩陣A的轉(zhuǎn)置矩陣,A*表示矩陣A的伴隨矩陣,E是單位矩陣,|A|表示方陣A的行列式...
2024-11-05 01:54
【總結(jié)】高等代數(shù)概念引入——矩陣運(yùn)算1.線性函數(shù)在平面上建立直角坐標(biāo)系.(1)將平面上每個(gè)點(diǎn)P繞原點(diǎn)向逆時(shí)針方向旋轉(zhuǎn)角α到點(diǎn)P'.寫出點(diǎn)P的坐標(biāo)(x,y)與點(diǎn)P‘的坐標(biāo)(x',y')之間的函數(shù)關(guān)系式.矩陣乘法例1
2024-10-19 06:21
【總結(jié)】線性代數(shù)??行列式、矩陣、n維向量、線性方程組、標(biāo)準(zhǔn)形與二次型,其中行列式與矩陣是其基本理論基礎(chǔ)。Leibniz在十七世紀(jì)就有了行列式的概念。Vandermonde是第一個(gè)對(duì)行列式理論做出連貫的邏輯闡述的人。Cayley被公認(rèn)為矩陣論的創(chuàng)立者。線性代數(shù)前言?矩陣論在二
2025-08-07 10:51
【總結(jié)】第一篇:線性代數(shù)總結(jié) 線性代數(shù)總結(jié)[轉(zhuǎn)貼2008-05-0413:04:49] 字號(hào):大中小 線性代數(shù)總結(jié) 一、課程特點(diǎn) 特點(diǎn)一:知識(shí)點(diǎn)比較細(xì)碎。 如矩陣部分涉及到了各種類型的性質(zhì)和關(guān)系,...
2024-10-29 06:20
【總結(jié)】第一篇:線性代數(shù)試題 線性代數(shù)試題(一) 一、填空(每題2分,共20分)(n12…(n-1))=。 ,第三列元素分別為-2,3,1,其余子式分別為9,6,24,則D=。 ,結(jié)論是。 ,設(shè)...
2024-10-29 06:53
【總結(jié)】2022~2022學(xué)年第二學(xué)期試卷(B)一、填空題(每小題4分,共20分)1.設(shè)n階方陣的行列式1,3A?則1*13.()15AA?????????n)2(3?nnA?mmB?????????????11100BA2.設(shè)與均可逆,
2025-01-17 07:32
【總結(jié)】Matlab在線性代數(shù)中的應(yīng)用目標(biāo)要求?會(huì)給矩陣賦值?會(huì)進(jìn)行矩陣的基本運(yùn)算,包括:加、減、數(shù)乘,乘法,轉(zhuǎn)置,冪等運(yùn)算?會(huì)用命令inv計(jì)算矩陣的逆?會(huì)用命令det計(jì)算行列式;?會(huì)用命令rank計(jì)算矩陣的秩;?會(huì)用命令rref把矩陣變?yōu)樾凶詈?jiǎn)型;?會(huì)用命令rref計(jì)算矩陣的逆?會(huì)用命令rref解方程組
2024-10-18 16:05