freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

區(qū)間上連續(xù)函數(shù)用多項(xiàng)式逼近的性態(tài)畢業(yè)設(shè)計(jì)(已修改)

2025-06-23 09:04 本頁面
 

【正文】 西安石油大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 區(qū)間上連續(xù)函數(shù)用多項(xiàng)式逼近的性態(tài) 摘 要: 在實(shí)際的應(yīng)用中,經(jīng)常遇到這樣的問題:為解析式子比較復(fù)雜的函數(shù)尋找一個(gè)多項(xiàng)式來近似代替它,并要求其誤差在某種度量下意義下最小 . 這就是用多項(xiàng)式來逼近函數(shù)問題的研究 本文主要討論 了 區(qū)間上連續(xù)函數(shù)用多項(xiàng)式逼近的性態(tài) . 首先給出了在閉區(qū)間上連續(xù)函數(shù)用多項(xiàng)式逼近的相關(guān)結(jié)論 —— Weierstrass 逼近定理, 是 Weierstrass 于 1885 年提出的 , 這條定理保證了閉區(qū)間上的任何連續(xù)函數(shù)都能用多項(xiàng)式以任意給定的精度去逼近 . 通過引用 Bernstein 多項(xiàng)式和 切比雪夫多項(xiàng)式 給出了相 應(yīng)的證明 . 其次列出了Bernstein 多項(xiàng)式以及由 Bernstein 算子推廣得到的 Kantorovich 算子它們的概念、一些具體的性質(zhì)以及推廣和應(yīng)用 . 最后, 引進(jìn)推廣到無窮區(qū)間上的 S. Bernstein 多項(xiàng)式 ,進(jìn)一步研究了無窮區(qū)間上連續(xù)函數(shù)用多項(xiàng)式逼近的性態(tài),并得到了相關(guān)結(jié)論 . 關(guān)鍵詞: Weierstrass 逼近定理; Bernstein 多項(xiàng)式; Kantorovich 算子 ; S. Bernstein多項(xiàng)式 ;無窮區(qū)間 西安石油大學(xué)本科畢業(yè)設(shè)計(jì)(論文) Polynomial approximation of continuous functions on the interval property Abstract: In practical applications, often encounter this problem: to find a polynomial to approximate the more plex function of the analytical formula, and requested the minimum of the error is some kind of metric significance. This is the polynomial approximation function problems. This article focuses on the behavior of interval polynomial approximation of continuous functions. Firstly, the conclusions continuous function on a closed interval with a polynomial approximation Weierstrass approximation theorem, is weierstrass 1885, which Article theorem guarantees of any continuous function on the closed interval can use polynomials to approximate any given accuracy . Through quoted the Bernstein multinomial and the Chebyshev multinomial has given the corresponding proof. Next has listed the Bernstein multinomial as well as the Kantorovich operator which obtains by the Bernstein operator promotion their concept, some concrete nature as well as the promotion and the application. Finally, the introduction promotes to the infinite sector in the S. Bernstein multinomial, further has studied in the infinite sector the continuous function the condition which approaches with the multinomial, and obtained the related conclusion. Key words: Weierstrass approximation theorem, Bernstein polynomials。 Kantorovich operator。 S. Bernstein polynomial。 infinite interval 西安石油大學(xué)本科畢業(yè)設(shè)計(jì)(論文) I 目錄 第 1 章 緒論 ...................................................................................................................... 1 1. 1 區(qū)間上連續(xù)函數(shù)用多項(xiàng)式逼近的性態(tài)研究的背景 ............................................ 1 1. 2 區(qū)間上連續(xù)函數(shù)用多項(xiàng)式逼近的性態(tài)研究的意義 ............................................ 1 第 2 章 WEIERSTRASS 逼近定理的證明及應(yīng)用 ......................................................... 3 2. 1 WEIERSTRASS 逼近定理的第一種證明 ................................................................. 3 2. 1. 1 Weierstrass 逼近定理的 Bernstein 證明 ...................................................... 3 2. 1. 2 閉區(qū)間 ? ?ba, 上的 weierstrass 逼近定理 ...................................................... 6 2. 2 WEIERSTRASS 逼近定理的第二種證明 ................................................................. 6 2. 3 WEIERSTRASS 逼近定理的推廣 ............................................................................. 9 2. 3. 1 Weierstrass 第二定理 ................................................................................... 9 2. 3. 2 WeierstrassStone 定理 ............................................................................... 10 2. 3. 3 Weierstrass 逼近定理的逆定理 ................................................................. 11 第 3 章 BERNSTEIN 多項(xiàng)式和 KANTOROVICH 算子 ............................................. 13 3. 1 BERNSTEIN 多項(xiàng)式 ................................................................................................ 13 3. 1. 1 Bernstein 多項(xiàng)式的定義 ............................................................................ 13 3. 1. 2 Bernstein 算子的一些性質(zhì) ........................................................................ 14 3. 2 KANTOROVICH 算子 .............................................................................................. 19 3. 2. 1 Kantorovich 算子的定義 ........................................................................... 19 3. 2. 2 Kantorovich 算子的性質(zhì) ........................................................................... 20 3. 2. 3 Lebesgue 可積函數(shù)的 Kantorovich 算子逼近 .......................................... 21 3. 2. 4 加權(quán)的 Kantorovich 算子 .......................................................................... 22 第 4 章 S. BERNSTEIN 多項(xiàng)式在無窮區(qū)間上的推廣 .............................................. 25 4. 1 無窮區(qū)間上 S. BERNSTEIN 多項(xiàng)式的定義 ........................................................ 25 4. 2 無窮區(qū)間上 S. BERNSTEIN 多項(xiàng)式逼近定理 .................................................... 25 第 5 章 結(jié) 論 .................................................................................................................. 33 參考文獻(xiàn) …………………………………………………… …………………………… 35 致 謝 .............................................................................................. 錯(cuò)誤 !未定義書簽。 西安石油大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 1 第 1章 緒論 1. 1 區(qū)間上連續(xù)函數(shù)用多項(xiàng)式逼近的性態(tài)研究的背景 眾所周知,逼近的思想和方法滲透于幾乎所有的科學(xué),其中包括自然學(xué)科和人文學(xué)科 . 逼近論是一門研究各類函數(shù)性質(zhì)的學(xué)科,同時(shí)它又是計(jì)算數(shù)學(xué)、科學(xué)工程計(jì)算諸多數(shù)值方法(包括函數(shù)計(jì)算、數(shù)值微分、微分、積分方程數(shù)值解,曲線、曲面生成以及數(shù)據(jù)處理等等)的理論基礎(chǔ)和方法根據(jù) . 函數(shù)逼近論 是一門歷史悠久內(nèi)容豐富而且實(shí)踐性很強(qiáng)的學(xué)科 , 是數(shù)學(xué)中最蓬勃發(fā)展的領(lǐng)域之一 . 其發(fā)展經(jīng)歷了一個(gè)相當(dāng)漫長的時(shí)期 . 早在十九世紀(jì)五十年代 , 人們已經(jīng)對(duì)函數(shù)逼近論有了深入的研究 . 1859 年 Chebyshev 提出的最佳逼近的特征定理 、1885 年 Weierstrass 所建立的關(guān)于連續(xù)函數(shù)可以用多項(xiàng)式逼近的著名定理,使得函數(shù)逼近成為現(xiàn)代數(shù)學(xué)的一個(gè)重要分支 . 但函數(shù)逼近論作為一門獨(dú)立的學(xué)科得以蓬勃發(fā)展卻是上個(gè)世紀(jì) Jackson,Bernstein 以及蘇聯(lián)學(xué)派的一系列深刻工作所推動(dòng)的 . Bernstein 多項(xiàng)式在函數(shù)逼近論中是一個(gè)古 典的工具,也是迄今為止最受人們注意的正線性算子 . 它在逼近論中的地位,顯然是由 Bernstein 收斂定理確立的 . 但是遺憾的是,它的收斂速度十分緩慢 . 此外,由 Bernstein 算子變形產(chǎn)生了許多算子 . 沈燮昌對(duì)函數(shù)逼近論的發(fā)展做了一個(gè)較為詳盡的總結(jié)和概括,其中說函數(shù)逼近論不僅研究實(shí)變函數(shù)域多項(xiàng)式的逼近問題,而且還研究其他函數(shù)系諸如有理函數(shù)、指數(shù)函數(shù)、無理函數(shù)、逐段多項(xiàng)式的最佳逼近以及復(fù)數(shù)域上各種函數(shù)系的最佳逼近 . 本文通過 證明 Weierstrass 逼近定理 ,以及對(duì) Bernstein 多項(xiàng)式和 由 Bernstein 算子推廣得到 Kantorovich 算子的研究,引入 S. Bernstein 多項(xiàng)式將對(duì)連續(xù)函數(shù)用多項(xiàng)式逼近的性態(tài)的研究 閉區(qū)間推廣到無窮區(qū)間 等 . 1. 2 區(qū)間上連續(xù)函數(shù)用多項(xiàng)式逼近的性態(tài)研究的意義 在計(jì)算機(jī)的時(shí)代 , 逼近論正以前所未有的速度 , 迅速地向前發(fā)展著 . 函數(shù)逼近問西安石油大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 2 題是從繪圖學(xué)、機(jī)械設(shè)計(jì)等實(shí)際需要中提出來的 . 函數(shù)逼近理論的研究具有悠久的歷史,其研究的核心為用簡單函數(shù)來逼近一類較為復(fù)雜的函數(shù),其中心問題是研究各類函數(shù)的光滑性與逼
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號(hào)-1