【總結(jié)】...... 二次函數(shù)中的最值問題重難點復習一般地,如果是常數(shù),,那么叫做的二次函數(shù).二次函數(shù)用配方法可化成:的形式的形式,得到頂點為(,),對稱軸是.,∴頂點是,對稱軸是直線.二次函數(shù)常用來解決最值
2025-03-24 12:30
【總結(jié)】?第3課時三角函數(shù)的單調(diào)性與值域【課標要求】掌握正弦函數(shù)、余弦函數(shù)的圖象,理解并掌握它們的奇偶性、值域相關的性質(zhì).【核心掃描】1.了解三角函數(shù)的單調(diào)性和值域.(重點)2.會求函數(shù)的單調(diào)區(qū)間和值域.(難點)自學導引1.正、余弦函數(shù)的單調(diào)性正弦函數(shù)y=sinx(x∈R)在
2024-11-09 22:06
【總結(jié)】求三角函數(shù)的周期、單調(diào)區(qū)間、最值。。例1】判斷下列函數(shù)的奇偶性:(1)(2)(3)【例2】求下列函數(shù)的周期:(1)(2)(3)(4)(5)
2025-08-05 10:58
【總結(jié)】精品資源求三角函數(shù)最值的幾種方法一、利用函數(shù)的增減性例1.若,求的最小值。解:設,顯然函數(shù)是sinx的減函數(shù),且即,故也是sinx的減函數(shù)?!喈敚磿r,的最小值是5。二、利用三角函數(shù)的有界性例2.求函數(shù)的最值。解:由已知得:所以由,得:即
2025-04-09 02:32
【總結(jié)】14.函數(shù)的值域與最值(二)班級姓名一、選擇題1.定義域為R的函數(shù))(xfy?的值域為??,,ba則函數(shù))(axfy??的值域為()(A)??baa?,2(B)??ab?,0(C)??ba,(
2025-07-24 14:18
【總結(jié)】三角函數(shù)求最值問題總結(jié)在三角函數(shù)這部分,求最值或周期是常規(guī)性題目,在這種題型下,我覺得解決問題可以采用兩種化簡思路:(1)化簡成BwxAy???)sin(?此時不僅可以求最值,還可以求周期。(2)化簡成關于正弦或余弦的一元二次函數(shù)形式,此時一般只要求求出最值。例題解析:例1、)42sin(23????xy求
2024-10-27 14:07
【總結(jié)】?1.判斷正誤:?(1)若函數(shù)f(x)在區(qū)間(a,b)和(c,d)上均為增函數(shù),則函數(shù)f(x)在區(qū)間(a,b)∪(c,d)上也是增函數(shù).?(2)若函數(shù)f(x)和g(x)在各自的定義域上均為增函數(shù),則f(x)+g(x)在它們定義域的交集(非空)上是增函數(shù).?[答案](1)×(
2024-11-10 12:26
【總結(jié)】廣東省深圳市第三高級中學數(shù)學必修一《函數(shù)的最大(小)值》課件一、問題導入的,在減區(qū)間上時隨著自變量的增大而降低的,那么函數(shù)的圖象有最高點和最低點嗎?2.函數(shù)圖象上升與下降反映了函數(shù)的單調(diào)性,如果函數(shù)的圖象存在最高點或最低點,它又反映了函數(shù)的什么性質(zhì)?二、探索新知——最大值觀察下列兩個函數(shù)圖象:思考1:這兩
2024-11-13 12:03
【總結(jié)】2018屆高三第一輪復習講義【8】-函數(shù)的值域與最值一、知識梳理1.函數(shù)的值域函數(shù)中,與自變量x對應的y的值叫做函數(shù)值,函數(shù)值的集合_____________________________________________________________________叫做函數(shù)的值域.2.常用函數(shù)的值域(1)一次函數(shù)的值域為___________
2025-04-17 13:02
【總結(jié)】20xx屆高三數(shù)學第一輪復習訓練(3)第頁共2頁13.函數(shù)的值域與最值(一)班級姓名一、選擇題1.下列函數(shù)中值域為??0??yRy的是()(A)1??xy(B)1?
2025-07-24 14:20
【總結(jié)】二次方程根的分布與二次函數(shù)在閉區(qū)間上的最值歸納1、一元二次方程根的分布情況設方程的不等兩根為且,相應的二次函數(shù)為,方程的根即為二次函數(shù)圖象與軸的交點,它們的分布情況見下面各表(每種情況對應的均是充要條件)表一:(兩根與0的大小比較即根的正負情況)分布情況兩個負根即兩根都小于0兩個正根即兩根都大于0一正根一負根即一個根小于0,一個大于0大致圖象()
2025-05-16 01:34
【總結(jié)】......函數(shù)最值的幾種求法新課程標準中,高中數(shù)學知識更加豐富,層次性更強,,必須從整體上把握課程標準,運用主線知識將高中數(shù)學知識穿成串,連成片,織成網(wǎng),才有利于學生更好的掌握,而函數(shù)的最值問題在整個高中教材中顯得非常重要,為了能系統(tǒng)
2025-05-16 01:56
【總結(jié)】......專題三:含絕對值函數(shù)的最值問題1.已知函數(shù)(),若對任意的,不等式恒成立,求實數(shù)的取值范圍.不等式化為即:(*)對任意的恒成立因為,所以分如下情況討論:[來源:學科網(wǎng)ZXXK]①當時,不等式(*)②當
2025-03-24 23:42
【總結(jié)】精品資源例析三角函數(shù)最值問題的若干解法三角函數(shù)是高中數(shù)學中重要的內(nèi)容之一,而最值問題的求解是三角函數(shù)的重要題型,在近幾年的高考題中經(jīng)常出現(xiàn),極具靈活性?,F(xiàn)舉例說明解決這種題型的若干方法,供大家參考。1.利用配方法例1.求函數(shù)的最值。解:將函數(shù)化為,配方得當當例2.若,那么函數(shù)的最小值是(
2025-03-24 07:06
【總結(jié)】???xyo(1)配方。(2)畫圖象。(3)根據(jù)圖象確定函數(shù)最值。(看所給范圍內(nèi)的最高點和最低點)122(a0)xxxyaxbxc??????求給定范圍內(nèi),二次函數(shù)最值的步驟:??2324yx???試判斷函數(shù)
2024-11-21 23:43