【正文】
編號(hào): 畢業(yè)設(shè)計(jì) 說(shuō)明書(shū) 課 題: MCML的散熱通道 分析研究 題 目類(lèi)型 : ?理論研究 ?實(shí)驗(yàn)研究 ?工程設(shè)計(jì) ?工程技術(shù)研究 ?軟件開(kāi)發(fā) 桂林電子科技大學(xué)畢業(yè)設(shè)計(jì)(論文)報(bào)告用紙 第 I 頁(yè) 摘 要 多芯片組件是繼 SMT 之后 20 世紀(jì) 90 年代在微電子封裝領(lǐng)域興起并得到迅速發(fā)展的一項(xiàng)最引人矚目 的新技術(shù)。 多芯片組件( MCM) 的出現(xiàn)標(biāo)志著電子組裝技術(shù)在高密度 、 高速度 、 高性能的方向上進(jìn)入了更高的層次。但是 , 隨著 MCM 集成度的提高 和體積的縮小 , 其單位體積內(nèi)的功率消耗不斷增大 , 導(dǎo)致發(fā)熱量增加和溫度急劇上升 , 從而強(qiáng)化了組件內(nèi)部由熱驅(qū)使所形成的機(jī)械 、 化學(xué)和電等諸方面的相互作用 。 如果結(jié)構(gòu)設(shè)計(jì)或材料選擇不合理 , MCM 工作時(shí)熱量不能很快地散發(fā)出去 , 會(huì)導(dǎo)致 MCM 內(nèi)外的溫度梯度過(guò)大 , 在 MCM 內(nèi)部形成過(guò)熱區(qū)或過(guò)熱點(diǎn)使元器件性能惡化 。 因此 , MCM 的熱設(shè)計(jì)和散熱技術(shù)的研究具有非常重要的作用 。 目前 , 對(duì) MCM 的散熱方法多種多樣 , 而風(fēng)冷散熱是比較普片化 , 因?yàn)轱L(fēng)冷 有著 成本 低 使用 方便 等優(yōu)點(diǎn) 。 本文選用 風(fēng)冷散熱器模型 作為研究對(duì)象 , 運(yùn)用 ANSYS 軟件對(duì)所選擇的 MCM 進(jìn) 行散熱分析 。 選擇不同的材料不同的模型散熱器進(jìn)行散熱分析比較。再綜合風(fēng)扇 (電機(jī) ),選擇最優(yōu)的散熱器模型進(jìn)行對(duì) MCML 進(jìn)行散熱 。 把芯片最高結(jié)溫盡可能的降低 ,從而 降低 MCML 的熱失效率 , 挺高它的壽命和挺高可靠性 。 關(guān)鍵詞 : 多芯片組件 ; 熱失效 ; 熱可靠性 ; 散熱器 桂林電子科技大學(xué)畢業(yè)設(shè)計(jì)(論文)報(bào)告用紙 第 II 頁(yè) ABSTRACT MCM is following rise in the 1990 of the 20th century in the field of microelectronics packaging and SMT is the rapid development of one of the most fascinating new technology. MCM marked the emergence of electronic assembly technology in high density, high speed, high performance into a higher level in the direction. However, with the improvement of MCM integrated and volume reduction, increasing power consumption in its unit volume, resulting in increased heat and temperature rising sharply, thus strengthening the formation of a ponent driven by internal heat mechanical, chemical and electrical, and other aspects of interaction. If the structure or design materials selection is unreasonable, MCM heat cannot be disseminated quickly while you work out, can lead to excessive temperature gradient inside and outside the MCM, in the formation of MCM internal overheating or hot spots makes ponents performance worse. Therefore, the MCM39。s thermal design and research on heat dissipation technology has a very important role. Currently, the MCM method of heat sink variety of cooling is more general, because cheap air cooling cost easy to use. This selection of air cooling radiator model, application of ANSYS software to the MCM thermal analysis you select. Choose a different material analysis and parison of different models of heat sink thermal. Integrated fan motor, selecting optimal heat dissipation model for MCML for cooling fins. Maximum junction temperature chip to reduce as much as possible to reduce the heat loss rate of MCML, its life and very high to very high reliability. Keywords: MCM。heat failure。 thermal reliability。radiators. 桂林電子科技大學(xué)畢業(yè)設(shè)計(jì)(論文)報(bào)告用紙 第 III 頁(yè) 目 錄 前 言 ............................................................................................................... 1 1 微電子技術(shù)概述 .......................................................................................... 3 微電子技術(shù)的發(fā)展 ....................................................................................................... 3 電子封裝技術(shù)發(fā)展趨勢(shì) .............................................................................................. 5 —小型化、高性能 ............................................................................. 5 ——追隨 IC 的發(fā)展而發(fā)展 ....................................................... 6 :新一代組裝技術(shù) ................................................................................. 6 系統(tǒng)封裝 (SPI:Systeminapaekage) ..................................................................... 7 (SOC: System on a Chip) .............................................................. 8 芯片技術(shù)的主要形式 ................................................................................................... 9 電子封裝的熱機(jī)械可靠性 ........................................................................................... 9 焊點(diǎn)失效機(jī)理 ............................................................................................................. 10 焊點(diǎn)的應(yīng)力應(yīng)變分析 ................................................................................................. 10 2 多芯片模塊 MCM ...................................................................................... 10 MCM 發(fā)展的現(xiàn)狀 ...................................................................................................... 10 MCM 技術(shù)優(yōu)點(diǎn) .......................................................................................................... 11 MCM 中襯底片、電介質(zhì)以及金屬導(dǎo)體的選擇技術(shù) .............................................. 12 ............................................................................................... 12 ............................................................................................... 12 導(dǎo)體選擇技術(shù) ........................................................................................... 12 MCM 的芯片裝連技術(shù) .............................................................................................. 13 ............................................................................................... 13 TAB技術(shù) .......................................................................................................... 13 芯片倒裝焊技術(shù) .............................................................................................. 13 3 MCM 產(chǎn)熱和散熱分析 .............................................................................. 14 MCM 的可靠性 .......................................................................................................... 14 MCM 失效模式與失效機(jī)理 ...................................................................................... 15 MCM 熱分析及散熱結(jié)構(gòu)優(yōu)化設(shè)計(jì) .......................................................................... 15 電子封裝中的熱傳輸 ........................................................