freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)知識(shí)點(diǎn)過關(guān)培優(yōu)訓(xùn)練∶平行四邊形含詳細(xì)答案(已修改)

2025-04-01 22:02 本頁面
 

【正文】 20202021中考數(shù)學(xué)知識(shí)點(diǎn)過關(guān)培優(yōu)訓(xùn)練∶平行四邊形含詳細(xì)答案一、平行四邊形1.如圖,現(xiàn)有一張邊長(zhǎng)為4的正方形紙片ABCD,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合),將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.(1)求證:∠APB=∠BPH;(2)當(dāng)點(diǎn)P在邊AD上移動(dòng)時(shí),求證:△PDH的周長(zhǎng)是定值;(3)當(dāng)BE+CF的長(zhǎng)取最小值時(shí),求AP的長(zhǎng).【答案】(1)證明見解析.(2)證明見解析.(3)2.【解析】試題分析:(1)根據(jù)翻折變換的性質(zhì)得出∠PBC=∠BPH,進(jìn)而利用平行線的性質(zhì)得出∠APB=∠PBC即可得出答案;(2)首先證明△ABP≌△QBP,進(jìn)而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)過F作FM⊥AB,垂足為M,則FM=BC=AB,證明△EFM≌△BPA,設(shè)AP=x,利用折疊的性質(zhì)和勾股定理的知識(shí)用x表示出BE和CF,結(jié)合二次函數(shù)的性質(zhì)求出最值.試題解析:(1)解:如圖1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90176。,∴∠EPH∠EPB=∠EBC∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)證明:如圖2,過B作BQ⊥PH,垂足為Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90176。,BP=BP,在△ABP和△QBP中,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90176。,BH=BH,在△BCH和△BQH中,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周長(zhǎng)為:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周長(zhǎng)是定值.(3)解:如圖3,過F作FM⊥AB,垂足為M,則FM=BC=AB.又∵EF為折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90176。,∴∠EFM=∠ABP.又∵∠A=∠EMF=90176。,在△EFM和△BPA中,∴△EFM≌△BPA(AAS). ∴EM=AP.設(shè)AP=x在Rt△APE中,(4BE)2+x2=BE2.解得BE=2+,∴CF=BEEM=2+x,∴BE+CF=x+4=(x2)2+3.當(dāng)x=2時(shí),BE+CF取最小值,∴AP=2.考點(diǎn):幾何變換綜合題.2.已知:如圖,在平行四邊形ABCD中,O為對(duì)角線BD的中點(diǎn),過點(diǎn)O的直線EF分別交AD,BC于E,F(xiàn)兩點(diǎn),連結(jié)BE,DF.(1)求證:△DOE≌△BOF.(2)當(dāng)∠DOE等于多少度時(shí),四邊形BFDE為菱形?請(qǐng)說明理由.【答案】(1)證明見解析;(2)當(dāng)∠DOE=90176。時(shí),四邊形BFED為菱形,理由見解析.【解析】試題分析:(1)利用平行四邊形的性質(zhì)以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一組對(duì)邊平行且相等的四邊形是平行四邊形得出四邊形EBFD是平行四邊形,進(jìn)而利用垂直平分線的性質(zhì)得出BE=ED,即可得出答案.試題解析:(1)∵在?ABCD中,O為對(duì)角線BD的中點(diǎn),∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)當(dāng)∠DOE=90176。時(shí),四邊形BFDE為菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四邊形EBFD是平行四邊形,∵∠EOD=90176。,∴EF⊥BD,∴四邊形BFDE為菱形.考點(diǎn):平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);菱形的判定.3.如圖1,已知正方形ABCD的邊CD在正方形DEFG的邊DE上,連接AE,GC.(1)試猜想AE與GC有怎樣的關(guān)系(直接寫出結(jié)論即可);(2)將正方形DEFG繞點(diǎn)D按順時(shí)針方向旋轉(zhuǎn),使點(diǎn)E落在BC邊上,如圖2,連接AE和CG.你認(rèn)為(1)中的結(jié)論是否還成立?若成立,給出證明;若不成立,請(qǐng)說明理由.(3)在(2)中,若E是BC的中點(diǎn),且BC=2,則C,F(xiàn)兩點(diǎn)間的距離為   .【答案】(1) AE=CG,AE⊥GC;(2)成立,證明見解析; (3) .【解析】【分析】(1)觀察圖形,AE、CG的位置關(guān)系可能是垂直,下面著手證明.由于四邊形ABCD、DEFG都是正方形,易證得△ADE≌△CDG,則∠1=∠2,由于∠∠3互余,所以∠∠3互余,由此可得AE⊥GC.(2)題(1)的結(jié)論仍然成立,參照(1)題的解題方法,可證△ADE≌△CDG,得∠5=∠4,由于∠∠7互余,而∠∠6互余,那么∠6=∠7;由圖知∠AEB=∠CEH=90176。﹣∠6,即∠7+∠CEH=90176。,由此得證.(3)如圖3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,則四邊形CMGH是矩形,可得CM=GH,CH=GM.想辦法求出CH,HF,再利用勾股定理即可解決問題.【詳解】(1)AE=CG,AE⊥GC;證明:延長(zhǎng)GC交AE于點(diǎn)H,在正方形ABCD與正方形DEFG中,AD=DC,∠ADE=∠CDG=90176。,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90176。,∴∠1+∠3=90176。,∴∠AHG=180176。﹣(∠1+∠3)=180176。﹣90176。=90176。,∴AE⊥GC.(2)答:成立;證明:延長(zhǎng)AE和GC相交于點(diǎn)H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90176。,∴∠1=∠2=90176。﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90176。,∠4+∠7=180176。﹣∠DCE=180176。﹣90176。=90176。,∴∠6=∠7,又∵∠6+∠AEB=90176。,∠AEB=∠CEH,∴∠CEH+∠7=90176。,∴∠EHC=90176。,∴AE⊥GC.(3)如圖3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,則四邊形CMGH是矩形,可得CM=GH,CH=GM.∵BE=CE=1,AB=CD=2,∴AE=DE=CG═DG=FG=,∵DE=DG,∠DCE=∠GND,∠EDC=∠DGN,∴△DCE≌△GND(AAS),∴GCD=2,∵S△DCG=?CD?NG=?DG?CM,∴22=?CM,∴CM=GH=,∴MG=CH==,∴FH=FG﹣FG=,∴CF===.故答案為.【點(diǎn)睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),全等三角形的
點(diǎn)擊復(fù)制文檔內(nèi)容
外語相關(guān)推薦
文庫吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號(hào)-1