【總結】在RtΔABC中,若∠C=900,問題1.兩銳角∠A與∠B有什么關系?答:∠A+∠B=900.問題2.三邊a、b、c的關系如何?答:a2+b2=c2.問題3.∠B與邊的關系是
2024-11-10 01:51
【總結】復習課解直角三角形銳角三角函數(shù)解直角三角形三角函數(shù)定義特殊角的三角函數(shù)值互余兩角三角函數(shù)關系同角三角函數(shù)關系兩銳角之間的關系三邊之間的關系邊角之間的關系定義函數(shù)值互余關系函數(shù)關系ABC∠A的對邊
2024-11-18 21:41
【總結】1第四單元三角形第19課時解直角三角形及其應用考點聚焦在Rt△ABC中,∠C=900,∠A、∠B、∠C的對邊分別為a、b、c,則∠A的正弦可表示為sinA=,∠A的余弦可表示為cosA=.∠A的正切可表示為tanA=,
2025-06-12 04:42
【總結】三邊之間的關系a2+b2=c2(勾股定理);銳角之間的關系∠A+∠B=90o邊角之間的關系(銳角三角函數(shù))tanA=absinA=ac1、cosA=bcACBabc解直角三角形的依據(jù)2、30°,45°,60
2025-08-16 02:00
2025-06-12 04:41
【總結】LOGO解直角三角形復習講課者:倪先德威遠縣第一初級中學導入ABCabc在直角三角形中,由已知元素求出所有未知元素的過程,叫解直角三角形.什么叫解直角三角形?知識網(wǎng)絡直角三角形的邊角關系解直角三角形已知一邊一
2025-08-01 14:01
【總結】解直角三角形的應用(2)在視線與水平線所成的角中,視線在水平線的上方的角叫做仰角。視線在水平線下方的角叫做俯角。仰角與俯角都是視線與水平線所成的角。一、知識回顧鉛垂線俯角仰角水平線視線視線鞏固練習1、如圖,某景區(qū)山的高度為500米,在山角的大門A處測得C處的仰角為45
2025-05-05 05:36
【總結】ABCcba┌解直角三角形及其應用第3課時1、理解坡度、坡角等概念,會應用解直角三角形的知識解決與坡度、坡角有關的問題;2、進一步培養(yǎng)分析、解決問題的能力,體會數(shù)形結合的思想.海中有一個小島A,該島四周10海里內有暗礁.今有貨輪由西向東航行,開始在A島南偏西55°的B處,往東行
2025-07-24 07:23
【總結】解直角三角形的應用保定市育德中學陳靜中考專題復習一、利用解直角三角形的知識來解決實際應用問題,是中考的一大類型題,主要涉及測量、航空、航海、工程等領域,解答好此類問題要先理解以下幾個概念:1仰角、俯角;
2024-11-06 21:44
【總結】直角三角形(第1課時)直角三角形(第1課時)得分________卷后分________評價________1.直角三角形的兩銳角;直角三角形兩直角邊的平方和等于
2025-07-20 04:17
【總結】解直角三角形第2課時1、了解仰角、俯角的概念,能應用銳角三角函數(shù)的知識解決有關實際問題;2、培養(yǎng)學生分析問題、解決問題的能力.(2)兩銳角之間的關系∠A+∠B=90°(3)邊角之間的關系caAA???斜邊的對邊sincbBB???斜邊的對邊sincbAA???
2024-11-21 00:13
【總結】第二節(jié)解直角三角形及其應用考點一解直角三角形的應用例1(2022·湖南岳陽中考)圖1是某小區(qū)入口實景圖,圖2是該入口抽象成的平面示意圖.已知入口BC寬,門衛(wèi)室外墻AB上的O點處裝有一盞路燈,點O與地面BC的距離為,燈臂OM長為(燈罩長度忽略不計),∠AOM=60°.(1)求點M到地面的距離;
2025-06-17 19:54
【總結】解直角三角形及其應用探究:測量底部不可到達物體的高度教學目標1.認知與技能:(1)用測角儀和皮尺等工具,并結合所學的解斜三角形中相關知識解決一些實際問題;(2)一步把數(shù)和形結合起來,提高學生分析問題和解決問題的能力.2.過程與方法:(1)設計實地測量方案,在設計過程中會靈活地運用三角函數(shù)關系,進行正確的邊角互化;(2)學會將千變萬化的實際問題轉化為數(shù)學
2025-06-07 22:12
2025-06-17 19:45