【總結】北師大版九年級下冊數(shù)學()①垂直弦的直徑平分這條弦②相等的圓心角所對的弧相等③圓既是軸對稱圖形,又是中心對稱圖形A.①②B.①③C.②③D.①②③?答:相等.答:頂點在圓心的角叫圓心角.?B情境導入本節(jié)目標..
2025-06-20 17:31
【總結】北師大版九年級下冊數(shù)學圓周角:頂點在圓上,它的兩邊分別與圓還有另一個交點,像這樣的角,叫做圓周角.圓周角定理圓周角的度數(shù)等于它所對弧上的圓心角度數(shù)的一半.ABC●O●OABC●OABC●OABC情境導入本節(jié)目標,會熟練運用推論解決問題.2.培養(yǎng)學生觀察、分析及理解問題的能力
【總結】圓周角和圓心角的關系一、選擇題1.在同圓中,同弦所對的圓周角()A.相等B.互補C.相等或互補D.互余2.如圖3-63所示,A,B,C,D在同一個圓上,四邊形ABCD的兩條對角線把四個內(nèi)角分成的8個角中,相等的角共有()A.2對
2024-11-28 17:50
【總結】第三章圓圓周角和圓心角的關系知識點1圓周角的概念1.下列圖形中的角是圓周角的有(B)A.0個B.1個C.2個D.3個知識點2圓周角定理2.如圖所示,邊長為1的小正方形構成的網(wǎng)格中,半徑為1的☉O的圓心O在格點上,則∠AED的正切值等于
2025-06-17 12:05
【總結】圓周角和圓心角的關系(1)圓心角、弧、弦、弦心距之間的關系ABCDOABOA'B'O'在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等圓心角、弧、弦、弦心距之間的關系ABCDOABOA'B'O'在同圓或等圓中,
2024-11-30 02:41
【總結】●OBACDE特征:①角的頂點在圓上.②角的兩邊都與圓相交.1、圓周角定義:頂點在圓上,并且兩邊都和圓相交的角叫圓周角.?●OBACDE溫故知新:圓周角定理?圓周角定理一條弧所對的圓周角等于它所對的圓心角的一半.?老師提示:
2024-12-07 21:28
【總結】圓周角和圓心角的關系(1)圓周角定理一、舊知回放:?.OBC答:相等.答:頂點在圓心的角叫圓心角.弧的度數(shù)的關系?23、(05年茂名)下列命題是真命題的是()1)垂直弦的直徑平分這條弦2)相等的圓心角所對的弧相等3)圓既是軸對稱圖形,還是中心對稱圖形A
2024-11-30 08:31
【總結】足球射門●OBACBACDEDEEODCBA⌒在同圓或等圓中,同弧或等弧所對的圓周角相等圖中還有沒有圓周角相等?CBA直徑所對的圓周角是直角作一條直徑,過直徑的兩個端點作一個圓周角CBA作一個90°
【總結】圓周角和圓心角的關系一、選擇題1.在同圓中,同弦所對的圓周角()A.相等B.互補C.相等或互補D.互余2.如圖3-63所示,A,B,C,D在同一個圓上,四邊形ABCD的兩條對角線把四個內(nèi)角分成的8個角中,相等的角共有()A.2對B.
2024-11-28 19:22
【總結】圓周角和圓心角的關系能力提升,若AB是☉O的直徑,CD是☉O的弦,∠ABD=58°,則∠BCD等于()°°°°,△ABC內(nèi)接于☉O,∠C=60°,AB=6,則☉O的半徑是()(第1題圖)
2024-12-03 11:48
【總結】九年級數(shù)學(下)第三章圓3.圓周角和圓心角的關系(2)圓周角定理11、一條弧所對的圓心角等于_______,所對的圓周角等于_______。2、一弦分圓成兩部分,其中一部分是另一部分的4倍,則這弦所對的圓周角度數(shù)為________________。33、如圖,在⊙O中,∠BAC=32
2025-08-01 17:24
【總結】如圖,在足球射門的游戲中,球員射中球門的難易程度與他所處的位置B對球門AC的張角(∠BAC)有關.當球員在B、D、E三點射門時,他所處的位置對球門AC分別形成三個張角∠BAC,∠BAC,∠BAC.這三個角的大小有什么關系?在這三點射門的效果一樣嗎?創(chuàng)設情境,自然引入探究學習,感悟新知問題1:觀察圖中的
2024-11-17 18:27
【總結】(1)圓周角:頂點在圓上,角的兩邊在圓內(nèi)部分分別是圓的弦,這樣的角叫圓周角?在射門游戲中(如圖),球員射中球門的難易程度與他所處的位置B對球門AC的張角(∠ABC)有關.讀一讀2●OBACBAC圓周角?當球員在B,D,E處射門時,他所處的位置對球門AC分別形成三個張
2024-12-08 02:56
【總結】?頂點在圓心的角叫圓心角.?如圖:∠AOB弧AB的度數(shù).,如果兩個圓心角、兩、兩條中有一組量相等,那么它們所對應的其余各組量都分別相等.弧弦=知識回顧角頂點發(fā)生變化時,我們得到幾種情況?思考:三個圖中的∠BAC的頂點A各在圓的什么位置?
2025-11-07 23:16
【總結】圓周角和圓心角的關系【教學內(nèi)容】圓周角和圓心角的關系(二)【教學目標】知識與技能理解圓內(nèi)接多邊形和多邊形的外接圓的概念,掌握圓內(nèi)接四邊形的性質,并會用此性質進行有關的計算和證明;過程與方法進一步掌握圓周角定理及推論,并會綜合運用知識進行有關的計算和證明,培養(yǎng)分析問題、解決問題的能力;情感、態(tài)度與價值觀引導學生對圖形進行