freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

函數(shù)的單調(diào)性教學(xué)設(shè)計-文庫吧

2024-11-04 01:31 本頁面


【正文】 3)在價值觀和情感教育方面,讓學(xué)生在解題的過程中體驗數(shù)學(xué)美,培養(yǎng)學(xué)生樂于求索的精神,提高學(xué)生的數(shù)學(xué)修養(yǎng),使其養(yǎng)成科學(xué)、嚴謹?shù)难芯繎B(tài)度。教學(xué)重點和難點:本節(jié)課的教學(xué)重點是函數(shù)單調(diào)性的判定、證明及應(yīng)用。其中的教學(xué)難點是函數(shù)單調(diào)性的應(yīng)用和復(fù)合函數(shù)單調(diào)性的理解。教法和學(xué)法:在教法上采用傳統(tǒng)的講練結(jié)合。在具體實施上,將采用計算機輔助教學(xué)的手段,為了貼切地服務(wù)于教學(xué)目標(biāo),課件的制作是為了能更好的講練習(xí)題,提高課堂效率,用是PowerPoint軟件。而學(xué)生在學(xué)習(xí)過程中不僅要訓(xùn)練知識技能,還要達到思維的訓(xùn)練,因此這節(jié)課要以學(xué)生為主體,給學(xué)生充足的活動空間。作為教師,我要做好啟發(fā)和規(guī)范地指導(dǎo),引領(lǐng)學(xué)生大膽地探索,并培養(yǎng)其嚴謹?shù)臄?shù)學(xué)品質(zhì)。教學(xué)過程設(shè)計:大概分為復(fù)習(xí)回顧、例題講解、規(guī)律小結(jié)、鞏固練習(xí)四個版塊,最后布置作業(yè)。下面為每部分的具體構(gòu)思。復(fù)習(xí)分為概念回顧和基礎(chǔ)練習(xí)兩部分,預(yù)計費時7到8分鐘左右,其中概念為(1)函數(shù)單調(diào)性和單調(diào)區(qū)間的定義以及用定義證明函數(shù)單調(diào)性的步驟,(2)怎么判斷函數(shù)單調(diào)性及單調(diào)區(qū)間——可以用定義法,也可以從圖象上觀察。形式主要由學(xué)生口答?;A(chǔ)練習(xí)部分選擇了5道小題目,課件形式給出,請學(xué)生口答,內(nèi)容涉及單調(diào)性的理解,一次函數(shù)、二次函數(shù)的單調(diào)性,最后一題讓學(xué)生們畫出圖象,觀察圖象的“升降”寫出單調(diào)區(qū)間,滲透數(shù)形結(jié)合的思想,都是小題目,難度小,用時少,但緊扣概念,也讓學(xué)生迅速熱身,無形中抓住了學(xué)生的課堂注意力。例題選擇方面:關(guān)于例試判斷函數(shù)f(x)=變式:討論函數(shù)f(x)=x(1x1)的單調(diào)性并證明; x21ax(1x1)的單調(diào)性。x21選擇這個題目是為了讓學(xué)生更好地掌握定義法證明函數(shù)單調(diào)性的方法和基本步驟,變式的選擇是為培養(yǎng)學(xué)生分情況討論的意識和能力,講解過程中要注意證明的規(guī)范性,進一步培養(yǎng)學(xué)生嚴謹、規(guī)范的科學(xué)態(tài)度和品質(zhì)。關(guān)于例求函數(shù)y=x21的值域。x+2函數(shù)單調(diào)性的一個很重要的應(yīng)用是求函數(shù)的值域或最值,選擇這道題,教會學(xué)生利用單調(diào)性來求函數(shù)值域的方法。讓學(xué)生體會利用單調(diào)性求值域時的簡捷有效。豐富學(xué)生的知識體系。關(guān)于例已知函數(shù)f(x)是定義在(0,+165。)上的增函數(shù),且f()=f(x)f(y)xy(1)求f(1)的值(2)若f(3)=1,解不等式f(x+5)2這是一道抽象函數(shù)的題目,對于求出f(1)、f(9)分別是0和2用的是賦值法,這是抽象函數(shù)中常用的方法,不等式變?yōu)閒(x+5)f(9),應(yīng)用函數(shù)單調(diào)性,將抽象函數(shù)函數(shù)值的大小關(guān)系,轉(zhuǎn)化為自變量之間的大小關(guān)系,即237。236。x+59,提醒學(xué)生注意函數(shù)定義域!238。x+50選擇這個抽象函數(shù)的例子,目的就是讓學(xué)生體會并掌握怎么樣利用單調(diào)性轉(zhuǎn)化函數(shù)和自變量的大小關(guān)系。關(guān)于例已知f(x)是R上的減函數(shù),g(x)=x2+4x,求函數(shù)h(x)=f(g(x))的單調(diào)增區(qū)間。最終的那個函數(shù)明顯是個復(fù)合函數(shù),函數(shù)g(x)圖象的對稱軸是x=2,開口向下,在[2,+165。)上遞減,又f(x)也遞減,所以[2,+165。)是個增區(qū)間。本題小結(jié):兩個函數(shù)單調(diào)性相同則復(fù)合后是增,相反則復(fù)合后是減。關(guān)于這部分的課堂小結(jié):我們可以應(yīng)用函數(shù)的單調(diào)性求函數(shù)值域、解不等式,以及證明一些代數(shù)命題。關(guān)于鞏固練習(xí)題目方面的選擇:這部分選兩題,類型在例題中已出現(xiàn),其中第一個要先證明函數(shù)的單調(diào)性,再求值域。而第二題則先要判斷單調(diào)性,再進行證明,確定了單調(diào)性之后再應(yīng)用到三角形的問題中,使學(xué)生在解題的過程中體會在一些代數(shù)不等式證明中如何應(yīng)用函數(shù)單調(diào)性的。這部分讓學(xué)生自己做,用投影儀和板書結(jié)合,規(guī)范其書寫和論證。關(guān)于作業(yè)布置方面:結(jié)合本節(jié)課的講解內(nèi)容,為進一步鞏固教學(xué)成果,在作業(yè)題型選擇上,本人力求做到緊扣和深化上課內(nèi)容。一共有三大題,第一題是求單調(diào)區(qū)間,其中要用圖形,數(shù)形結(jié)合;第二題要利用例4的小結(jié)“兩個函數(shù)單調(diào)性相同則復(fù)合后是增,相反則復(fù)合后是減?!?;第三題是抽象函數(shù)題,與課上的例3類型一樣,讓學(xué)生課后練習(xí)鞏固。以上是我對這部分習(xí)題教學(xué)方面的一些思考,希望得到專家的指正!第三篇:函數(shù)單調(diào)性函數(shù)單調(diào)性概念教學(xué)的三個關(guān)鍵點 ──兼談《函數(shù)單調(diào)性》的教學(xué)設(shè)計北京教育學(xué)院宣武分院 彭 林函數(shù)單調(diào)性是學(xué)生進入高中后較早接觸到的一個完全形式化的抽象定義,對于仍然處于經(jīng)驗型邏輯思維發(fā)展階段的高一學(xué)生來講,有較大的學(xué)習(xí)難度。一直以來,這節(jié)課也都是老師教學(xué)的難點。最近,在我區(qū)“青年教師評優(yōu)課”上,聽了多名教師對這節(jié)課不同風(fēng)格的課堂教學(xué),通過對他們教學(xué)案例的研究和思考,筆者認為,在函數(shù)單調(diào)性概念的教學(xué)中,關(guān)鍵是把握住如下三個關(guān)鍵點。關(guān)鍵點1。學(xué)生 學(xué)習(xí)函數(shù)單調(diào)性的認知基礎(chǔ)是什么?在這個內(nèi)容之前,已經(jīng)教學(xué)過一次函數(shù)、二次函數(shù)、反比例函數(shù)等簡單函數(shù),函數(shù)的變量定義和映射定義,以及函數(shù)的表示。對函數(shù)是一個刻畫某些運動變化數(shù)量關(guān)系的數(shù)學(xué)概念,也已經(jīng)形成初步認識。接踵而來的任務(wù)是對函數(shù)應(yīng)該繼續(xù)研究什么。在數(shù)學(xué)研究中,建立一個數(shù)學(xué)概念的意義就是揭示它的本質(zhì)特征,即共同屬性或不變屬性。對各種函數(shù)模型而言,就是研究它們所描述的運動關(guān)系的變化規(guī)律,也就是這些運動關(guān)系在變化之中的共同屬性或不變屬性,即“變中不變”的性質(zhì)。按照這種科學(xué)研究的思維方式,使得當(dāng)前來討論函數(shù)的一些性質(zhì),就成為順理成章的、必要的和有意義的數(shù)學(xué)活動。至于在多種函數(shù)性質(zhì)中,選擇這個時機來討論函數(shù)的單調(diào)性而不是其他性質(zhì),是因為函數(shù)的單調(diào)性是學(xué)生從已經(jīng)學(xué)習(xí)的函數(shù)中比較容易發(fā)現(xiàn)的一個性質(zhì)。就中小學(xué)生與單調(diào)性相關(guān)的經(jīng)歷而言,學(xué)生認識函數(shù)單調(diào)性可以分為四個階段: 第一階段,經(jīng)驗感知階段(小學(xué)階段),知道一個量隨另一個量的變化而變化的具體情境,如“隨著年齡的增長,我的個子越來越高”,“我認識的字越多,我的知識就越多”等。第二階段,形象描述階段(初中階段),能用抽象的語言描述一個量隨另一個量變化的趨勢,如“y隨著x的增大而減少”。第三階段,抽象概括階段(高中必修1),能進行脫離具體和直觀對象的抽象化、符號化的概括,并通過具體函數(shù),初步體會單調(diào)性在研究函數(shù)變化中的作用。第四階段,認識提升階段(高中選修系列2),要求學(xué)生能初步認識導(dǎo)數(shù)與單調(diào)性的聯(lián)系。基于上述認識,函數(shù)單調(diào)性教學(xué)的引入應(yīng)該從學(xué)生的已有認知出發(fā),建立在學(xué)生初中已學(xué)的一次函數(shù)、二次函數(shù)以及反比例函數(shù)的基礎(chǔ)上,即從學(xué)生熟悉的常見函數(shù)的圖象出發(fā),直觀感知函數(shù)的單調(diào)性,完成對函數(shù)單調(diào)性定義的第一次認識.。讓學(xué)生分別作出函數(shù)數(shù)值有什么變化規(guī)律? 的圖象,并且觀察自變量變化時,函在學(xué)生畫圖的基礎(chǔ)上,引導(dǎo)學(xué)生觀察圖象,獲得信息:第一個圖象從左向右逐漸上升,y隨x的增大而增大;第二個圖象從左向右逐漸下降,對于自變量變化時,函數(shù)值具有這兩種變化規(guī)律的函數(shù),通過討論使學(xué)生明確函數(shù)的單調(diào)性是對定義域內(nèi)某個區(qū)間而言的.在此基礎(chǔ)上,教師引導(dǎo)學(xué)生用自己的語言描述增函數(shù)的定義: 如果函數(shù)在某個區(qū)間上的圖象從左向右逐漸上升,或者如果函數(shù)在某個區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù)在該區(qū)間上為增函數(shù).關(guān)鍵點2。為什么要用數(shù)學(xué)的符號語言定義函數(shù)的單調(diào)性概念?對于函數(shù)單調(diào)性概念的教學(xué)而言,有一個很重要的問題,即為什么要進一步形式化。學(xué)生在初中已經(jīng)接觸過一次函數(shù)、反比例函數(shù)、二次函數(shù),對函數(shù)的增減性已有初步的認識:隨x增大y增大是增函數(shù),隨x增大y 減小是減函數(shù)。這個觀念對他們而言是易于接受的,很形象,他們會覺得這樣的定義很好,為什么還要費神去進行符號化呢?如果教師能通過教學(xué)設(shè)計,讓學(xué)生感受到進一步符號化、形式化的必要性,造成認知沖突,則學(xué)生研究的興趣就會大大提高,主動性也會更強。其實,數(shù)學(xué)概念就是一系列常識不斷精微化的結(jié)果,之所以要進一步形式化,完全是數(shù)學(xué)精確性、嚴密性的要求,因為只有達到這種符號化、形式化的程度,才可以進行準確的計算,進行推理論證。所以,在教學(xué)中提出類似如下的問題是非常必要的:右圖是函數(shù)函數(shù)嗎? 的圖象,能說出這個函數(shù)分別在哪個區(qū)間為增函數(shù)和減對于這個問題,學(xué)生的困難是難以確定分界點的確切位置.通過討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時不夠精確,需要結(jié)合解析式進行嚴密化、精確化的研究,使學(xué)生體會到用數(shù)量大小關(guān)系嚴格表述函數(shù)單調(diào)性的必要性,:如何用形式化的語言定義函數(shù)的單調(diào)性?從數(shù)學(xué)學(xué)科這個整體來看,數(shù)學(xué)的高度抽象性造成了數(shù)學(xué)的難懂、難教、難學(xué),解決這一問題的基本途徑是順應(yīng)學(xué)習(xí)者的認知規(guī)律:在需要和可能的情況下,盡量做到從直觀入手,從具體開始,逐步抽象,即數(shù)學(xué)的思考方式。恰當(dāng)運用圖形語言、自然語言和符號化的形式語言,并進行三者之間必要的轉(zhuǎn)化,可以說,這是學(xué)習(xí)數(shù)學(xué)的基本思考方式。而函數(shù)單調(diào)性這一內(nèi)容正是體現(xiàn)數(shù)學(xué)基本思考方式的一個良好載體,教學(xué)中應(yīng)該充分關(guān)注到這一點。長此以往,便可使學(xué)生在學(xué)習(xí)知識的同時,學(xué)到比知識更重要的東西—學(xué)會如何思考?如何進行數(shù)學(xué)的思考?一般說,對函數(shù)單調(diào)性的建構(gòu)有兩個重要過程,一是建構(gòu)函數(shù)單調(diào)性的意義,二是通過思維構(gòu)造把這個意義用數(shù)學(xué)的形式化語言加以描述。對函數(shù)單調(diào)性的意義,學(xué)生通過對若干函數(shù)圖象的觀察并不難認識,因此,前一過程的建構(gòu)學(xué)習(xí)相對比較容易進行。后一過程的進行則有相當(dāng)?shù)碾y度,其難就難在用數(shù)學(xué)的符合語言來描述函數(shù)單調(diào)性的定義時,如何才能最大限度地通過學(xué)生自己的思維活動來完成。這其中有兩個難點:(1)“x增大”如何用符號表示;同樣,“f(x)增大”如何用符號表示。(2)“‘隨著’x增大,函數(shù)f(x)‘
點擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1