【總結(jié)】 貝葉斯估計(jì)與貝葉斯學(xué)習(xí) 貝葉斯估計(jì)與貝葉斯學(xué)習(xí) 貝葉斯估計(jì)是概率密度估計(jì)的一種參數(shù)估計(jì),它將參數(shù)估計(jì)看成隨機(jī)變量,它需要根據(jù)觀測(cè)數(shù)據(jù)及參數(shù)鮮艷概率對(duì)其進(jìn)行估計(jì)。 一貝葉斯估計(jì)(1)貝葉斯估計(jì)...
2024-09-29 20:31
【總結(jié)】17/18第四章貝葉斯分析BayeseanAnalysis§一、決策問(wèn)題的表格表示——損失矩陣對(duì)無(wú)觀察(No-data)問(wèn)題a=δ可用表格(損失矩陣)替代決策樹(shù)來(lái)描述決策問(wèn)題的后果(損失):……π()…π()…
2025-06-26 10:20
【總結(jié)】貝葉斯決策模型及實(shí)例分析一、貝葉斯決策的概念貝葉斯決策,是先利用科學(xué)試驗(yàn)修正自然狀態(tài)發(fā)生的概率,在采用期望效用最大等準(zhǔn)則來(lái)確定最優(yōu)方案的決策方法。風(fēng)險(xiǎn)型決策是根據(jù)歷史資料或主觀判斷所確定的各種自然狀態(tài)概率(稱為先驗(yàn)概率),然后采用期望效用最大等準(zhǔn)則來(lái)確定最優(yōu)決策方案。這種決策方法具有較大的風(fēng)險(xiǎn),因?yàn)楦鶕?jù)歷史資料或主觀判斷所確定的各種自然狀態(tài)概率沒(méi)有經(jīng)過(guò)試驗(yàn)驗(yàn)證。為了降
2025-06-29 17:23
【總結(jié)】貝葉斯決策論和參數(shù)估計(jì)孟濤2022年4月11日提綱?貝葉斯決策論?最小誤差率分類?分類器、判別函數(shù)及判定面?正態(tài)密度和判別函數(shù)?貝葉斯置信網(wǎng)?最大似然估計(jì)?貝葉斯估計(jì)貝葉斯決策論?貝葉斯公式?貝葉斯公式的意義?判定的誤差概率?平均誤差概率?四
2025-08-04 07:04
【總結(jié)】貝葉斯估計(jì)BayesEstimation數(shù)理統(tǒng)計(jì)課題組例子:?某人打靶,打了5槍,槍槍中靶,?問(wèn):此人槍法如何??某人打靶,打了500槍,槍槍中靶,?問(wèn):此人槍法如何??經(jīng)典方法:極大似然估計(jì):100%?但是:……幾個(gè)學(xué)派(1)?經(jīng)典學(xué)派:頻率學(xué)派,抽樣學(xué)派?帶頭
2025-07-24 08:52
【總結(jié)】北京第七章貝葉斯分類器機(jī)器學(xué)習(xí)圖形繪制圖片處理圖表設(shè)計(jì)典型案例*貝葉斯決策論1346Contents目錄*25極大似然估計(jì)樸素貝葉斯分類器半樸素貝葉斯分類器貝葉斯網(wǎng)EM算法機(jī)器學(xué)習(xí)
2025-08-16 00:11
【總結(jié)】第七節(jié)貝葉斯公式全概率公式和貝葉斯公式主要用于計(jì)算比較復(fù)雜事件的概率,它們實(shí)質(zhì)上是加法公式和乘法公式的綜合運(yùn)用.綜合運(yùn)用加法公式P(A+B)=P(A)+P(B)A、B互斥乘法公式P(AB)=P(A)P(B|A)P(A)0例1有三個(gè)箱子,分別編號(hào)為1,
2025-08-15 23:46
【總結(jié)】樸素貝葉斯分類、摘要??????貝葉斯分類是一類分類算法的總稱,這類算法均以貝葉斯定理為基礎(chǔ),故統(tǒng)稱為貝葉斯分類。本文作為分類算法的第一篇,將首先介紹分類問(wèn)題,對(duì)分類問(wèn)題進(jìn)行一個(gè)正式的定義。然后,介紹貝葉斯分類算法的基礎(chǔ)——貝葉斯定理。最后,通過(guò)實(shí)例討論貝葉斯分類中最簡(jiǎn)單的一種:樸素貝葉斯分類。、分類問(wèn)題綜述
2025-04-08 23:55
【總結(jié)】貝葉斯網(wǎng)絡(luò)初步內(nèi)容提綱?何謂貝葉斯網(wǎng)絡(luò)??貝葉斯網(wǎng)絡(luò)的語(yǔ)義?條件分布的有效表達(dá)?貝葉斯網(wǎng)絡(luò)中的精確推理?貝葉斯網(wǎng)絡(luò)中的近似推理?課后習(xí)題、編程實(shí)現(xiàn)及研讀論文何謂貝葉斯網(wǎng)絡(luò)?A.貝葉斯網(wǎng)絡(luò)的由來(lái)B.貝葉斯網(wǎng)絡(luò)的定義C.貝葉斯網(wǎng)絡(luò)的別名D.獨(dú)立和條件獨(dú)立E.貝葉斯網(wǎng)絡(luò)示例
2024-09-28 09:50
【總結(jié)】Bayesianworks貝葉斯網(wǎng)絡(luò)Frequentistvs.Bayesian客觀vs.主觀Frequentist(頻率主義者):概率是長(zhǎng)期的預(yù)期出現(xiàn)頻率.P(A)=n/N,wherenisthenumberoftimeseventAoccursinNopportunities.“某事發(fā)生的概率是”
2025-02-19 12:56
2025-08-04 10:26
【總結(jié)】MCMC方法??一、貝葉斯統(tǒng)計(jì)的框架分析困難:后驗(yàn)分布是復(fù)雜的、高維的分布解決方法:馬爾可夫鏈蒙特卡羅(MCMC)方法后驗(yàn)分布先驗(yàn)信息似然函數(shù)?目前,MCMC已經(jīng)成為一種處理復(fù)雜統(tǒng)計(jì)問(wèn)題的特別流行的工具,尤其在經(jīng)常需要復(fù)雜的高維積分運(yùn)算的貝葉斯分析領(lǐng)域更是如此。在那里,高
2025-01-19 09:54
【總結(jié)】貝葉斯空間計(jì)量模型一、采用貝葉斯空間計(jì)量模型的原因殘差項(xiàng)可能存在異方差,而?ML?估計(jì)方法的前提是同方差,因此,當(dāng)殘差項(xiàng)存在異方差時(shí),采用?ML?方法估計(jì)出的參數(shù)結(jié)果不具備穩(wěn)健性。二、貝葉斯空間計(jì)量模型的估計(jì)方法(一)待估參數(shù)對(duì)于空間計(jì)量模型(以空間自回歸模型為例)y
2025-06-24 20:01
2025-07-21 12:43