【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》常見函數(shù)的導(dǎo)數(shù)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1.能根據(jù)導(dǎo)數(shù)的定義推導(dǎo)部分基本初等函數(shù)的導(dǎo)數(shù)公式;2.能利用導(dǎo)數(shù)公式求簡單函數(shù)的導(dǎo)數(shù).教學(xué)重點(diǎn):基本初等函數(shù)的導(dǎo)數(shù)公式的應(yīng)用.課前預(yù)習(xí):1.在上一節(jié)中,我們用割線逼近切線的方法引入了導(dǎo)數(shù)的概念,那么如何求函數(shù)的導(dǎo)數(shù)呢
2024-12-05 06:44
【總結(jié)】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)锳,區(qū)間IA.?如果對于區(qū)間I內(nèi)的任意兩個(gè)值x1、x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2),那么就說y=f(x)在區(qū)間I上是單調(diào)增函數(shù),I稱為y=f(x)的單調(diào)增區(qū)間.如果對于區(qū)間I內(nèi)的任意兩個(gè)值x1、x2
2024-11-18 08:56
【總結(jié)】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用——極大值與極小值一般地,設(shè)函數(shù)y=f(x),aby=f(x)xoyy=f(x)xoyab導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系知識回顧1)如果在某區(qū)間上,那么f(x)為該區(qū)間上的增函數(shù),?f(x)02)如果在某區(qū)間上
2024-11-17 23:31
【總結(jié)】第3課時(shí)函數(shù)的最值.[a,b]上連續(xù)函數(shù)f(x)的最大值和最小值的思想方法和步驟..如圖,設(shè)鐵路線AB=50km,點(diǎn)C處與B之間的距離為10km,現(xiàn)將貨物從A運(yùn)往C,已知1km鐵路費(fèi)用為2元,1km公路費(fèi)用為4元,在AB上M處修筑公路至C,使運(yùn)費(fèi)由A到C最省,求
2024-11-19 23:17
【總結(jié)】第三章導(dǎo)數(shù)及其應(yīng)用第7課時(shí)函數(shù)的和、差、積、商的導(dǎo)數(shù)(2)教學(xué)目標(biāo):、和(或差)的導(dǎo)數(shù)法則,學(xué)會用法則求復(fù)雜形式的函數(shù)的導(dǎo)數(shù);.教學(xué)重點(diǎn):靈活應(yīng)用函數(shù)的和、差、積、商的求導(dǎo)法則教學(xué)難點(diǎn):函數(shù)的積、商的求導(dǎo)法則的綜合應(yīng)用教學(xué)過程:Ⅰ.問題情境Ⅱ.建構(gòu)數(shù)學(xué)
2024-11-19 17:30
【總結(jié)】江蘇省建陵高級中學(xué)2021-2021學(xué)年高中數(shù)學(xué)四種命題導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1.了解命題及其逆命題、否命題與逆否命題;理解四種命題之間的關(guān)系;2.會利用兩個(gè)命題互為逆否命題的關(guān)系判別命題的真假.【課前預(yù)習(xí)】?你能判斷它們的真假嗎?(1)若直線a∥b,則直線a和直線b無公共點(diǎn);(2)
2024-12-04 18:08
【總結(jié)】江蘇省建陵高級中學(xué)2021-2021學(xué)年高中數(shù)學(xué)雙曲線標(biāo)準(zhǔn)方導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】理解雙曲線的定義及標(biāo)準(zhǔn)方程【課前預(yù)習(xí)】1.回顧橢圓的定義,標(biāo)準(zhǔn)方程2.平面內(nèi)到兩定點(diǎn)的距離的差為常數(shù)的點(diǎn)的軌跡是什么?3.拉鏈演示4.雙曲線的定義:平面內(nèi)與兩個(gè)定點(diǎn)1F,2F的距
2024-12-06 00:25
【總結(jié)】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)橢圓的幾何性質(zhì)(2)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1.能運(yùn)用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程;2.會運(yùn)用幾何性質(zhì)求離心率;3.能解決與橢圓幾何性質(zhì)有關(guān)的實(shí)際問題;4.了解橢圓的第二定義及焦點(diǎn)與準(zhǔn)線間關(guān)系.【課前預(yù)習(xí)】1.與橢圓??0122
2024-11-20 00:31
【總結(jié)】江蘇省建陵高級中學(xué)2021-2021學(xué)年高中數(shù)學(xué)橢圓的標(biāo)準(zhǔn)方程(2)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1.靈活應(yīng)用橢圓的兩個(gè)定義解題;2.能推導(dǎo)橢圓的焦半徑公式,并會用此公式解決問題。【課前預(yù)習(xí)】1.在橢圓)0(12222????babyax上的點(diǎn)M(x0,y0)的左焦半徑|MF1|=
2024-12-04 18:02
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)常見函數(shù)的導(dǎo)數(shù)課后知能檢測蘇教版選修1-1一、填空題1.已知f(x)=1x3,則f′(1)=________.【解析】∵f(x)=1x3=x-3,∴f′(x)=-3x-4,∴f′(1)=-3×1-4=-3.【答案】
2024-12-04 20:01
【總結(jié)】第5課時(shí)函數(shù)與導(dǎo)數(shù)的綜合性問題分析、極值、最值、參數(shù)等問題.、函數(shù)、不等式等知識的綜合.“知識網(wǎng)絡(luò)交匯點(diǎn)”處命題,合理設(shè)計(jì)綜合多個(gè)知識點(diǎn)的試題,考查分類討論、數(shù)形結(jié)合等數(shù)學(xué)思想方法.函數(shù)與導(dǎo)數(shù)是高中數(shù)學(xué)的核心內(nèi)容,函數(shù)思想貫穿中學(xué)數(shù)學(xué)全過程.導(dǎo)數(shù)作為工具,提供了研究函數(shù)性質(zhì)的一般性方法.作為
2024-12-04 23:43
【總結(jié)】2.4.1向量的數(shù)量積(1)【學(xué)習(xí)目標(biāo)】1.理解平面向量數(shù)量積的概念及其幾何意義2.掌握數(shù)量積的運(yùn)算法則3.了解平面向量數(shù)量積與投影的關(guān)系【預(yù)習(xí)指導(dǎo)】1.已知兩個(gè)非零向量a與b,它們的夾角為?,則把數(shù)量_________________叫做向量a與b的數(shù)量積(或內(nèi)積)。規(guī)定:零
2024-12-05 10:15
【總結(jié)】3.2.1幾個(gè)常用函數(shù)的導(dǎo)數(shù)學(xué)案學(xué)習(xí)目標(biāo)1.能夠用導(dǎo)數(shù)的定義求幾個(gè)常用函數(shù)的導(dǎo)數(shù);2.利用公式解決簡單的問題。學(xué)習(xí)重點(diǎn)和難點(diǎn)[來1.重點(diǎn):推導(dǎo)幾個(gè)常用函數(shù)的導(dǎo)數(shù);2.難點(diǎn):推導(dǎo)幾個(gè)常用函數(shù)的導(dǎo)數(shù)。學(xué)習(xí)過程一.自學(xué)、思考、練習(xí)憶一憶?1、函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義;
2024-12-08 22:40
【總結(jié)】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)導(dǎo)數(shù)在研究函數(shù)在的應(yīng)用(最大值與最小值)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1、使學(xué)生掌握可導(dǎo)函數(shù))(xf在閉區(qū)間??ba,上所有點(diǎn)(包括端點(diǎn)ba,)處的函數(shù)中的最大(或最小)值;2、使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的最大值與最小值的方法【課前預(yù)習(xí)】
2024-11-20 00:30
【總結(jié)】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)橢圓的幾何性質(zhì)(1)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):1.掌握橢圓的基本幾何性質(zhì):范圍、對稱性、頂點(diǎn)、長軸、短軸.2.感受如何運(yùn)用方程研究曲線的幾何性質(zhì).教學(xué)重點(diǎn):橢圓的幾何性質(zhì)——范圍、對稱性、頂點(diǎn).教學(xué)難點(diǎn):橢圓幾何性質(zhì)的研究過程,即如何運(yùn)用橢圓標(biāo)準(zhǔn)方程研究橢圓的幾何性質(zhì).教學(xué)過程: