【總結(jié)】第一章三角函數(shù)任意角的三角函數(shù)任意角的三角函數(shù)(二)1.了解三角函數(shù)線的意義.(重點)2.會用三角函數(shù)線表示角的正弦、余弦和正切.(重點)3.會用三角函數(shù)線來解三角不等式問題.(重點、難點)1.有向線段(1)定義:帶有方向的線段.(2)表示:用大寫字母表示,如有向線段
2024-11-19 19:09
【總結(jié)】任意角的三角函數(shù)考查知識點及角度難易度及題號基礎(chǔ)中檔稍難三角函數(shù)線的概念問題1、2、3三角函數(shù)線的應(yīng)用4、5、68、9其他問題7、10111.已知MP,OM,AT分別為60°角的正弦線、余弦線和正切線,則下列結(jié)論正確的是()A.MP<OM<AT
2024-11-19 23:27
【總結(jié)】任意角的三角函數(shù)(1)【學(xué)習(xí)目標】1.掌握任意角三角函數(shù)的定義,并能借助單位圓理解任意角三角函數(shù)的定義2.會用三角函數(shù)線表示任意角三角函數(shù)的值3.掌握正弦、余弦、正切函數(shù)的定義域和這三種函數(shù)的值在各象限的符號【學(xué)習(xí)重點、難點】任意角的正弦、余弦、正切的定義【自主學(xué)習(xí)】一、復(fù)習(xí)舊知,導(dǎo)入新課在初中,我
2024-11-19 12:32
【總結(jié)】任意角的三角函數(shù)任意角的三角函數(shù)(一)一、填空題1.當α為第二象限角時,|sinα|sinα-cosα|cosα|的值是________.2.角α的終邊經(jīng)過點P(-b,4)且cosα=-35,則b的值為________.3.已知sinθ2tanθ0,則角θ位于第___
2024-12-05 03:25
【總結(jié)】§(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)sin2?=sin(?+?)=cos2?=cos(?+?)==cos2?-sin2?==tan
2024-11-27 23:35
【總結(jié)】三角函數(shù)的誘導(dǎo)公式的教學(xué)設(shè)計一、指導(dǎo)思想與理論依據(jù)數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗
2024-11-18 16:46
【總結(jié)】《角的概念及任意角的三角函數(shù)》教學(xué)設(shè)計一、教學(xué)目標:1、知識與技能:①、了解任意角的概念.②、了解弧度制的概念,能進行弧度與角度的互化.③、理解任意角三角函數(shù)(正弦、余弦、正切)的定義2、過程與方法:引導(dǎo)學(xué)生利用初中所學(xué)的銳角三角函數(shù)把定義推廣到任意角,引出終邊相同的角的角這個重點,探討任意角的三角函數(shù)值的求法,最終
2024-11-19 11:25
【總結(jié)】§角的概念的推廣(課前預(yù)習(xí)案)班級:__姓名:__編寫:一、新知導(dǎo)學(xué):在平面內(nèi),角可以看做是一條射線繞著它的端點旋轉(zhuǎn)而成的圖形.旋轉(zhuǎn)起始時的射線叫做角的,終止時的射線叫做角的,射線的端點叫做角的.按逆時針方向旋轉(zhuǎn)所得到的角為,而按順時針方向旋轉(zhuǎn)所得到的角為
【總結(jié)】課題:同角三角函數(shù)關(guān)系班級:姓名:【學(xué)習(xí)目標】,并體會它們在三角函數(shù)式的化簡、求值和三角恒等式證明中的應(yīng)用?!菊n前預(yù)習(xí)】1、角?的終邊經(jīng)過點(4,3)(0)Paaa??,求?sin和?cos的值。2、你能
2024-12-05 10:17
【總結(jié)】雙基達標?限時20分鐘?1.下列敘述錯誤的是().A.a(chǎn)rctana表示一個??????-π2,π2內(nèi)的角B.若x=arcsina,則sinx=aC.若tanx2=a,則x=arctan2aD.a(chǎn)rcsina、arccosa中的a∈[-1,1]答案C2.若α
2024-11-27 23:47
【總結(jié)】江蘇省建陵高級中學(xué)2021-2021學(xué)年高中數(shù)學(xué)三角函數(shù)的導(dǎo)學(xué)案蘇教版必修4課題:班級:姓名:一:學(xué)習(xí)目標1.會用三角函數(shù)解決一些簡單的問題,體會三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型。2.觀察函數(shù)圖像,學(xué)會用待定系數(shù)法求解析式,能夠?qū)⑺l(fā)現(xiàn)的規(guī)律抽象
2024-12-05 10:16
【總結(jié)】?學(xué)習(xí)目標能從兩角和與差的正、余弦公式推導(dǎo)出積化和差、和差化積公式;能綜合運用和、差與倍角的三角公式進行恒等變換,體會化歸思想在解題中的應(yīng)用。?引引入入新新課課1、復(fù)習(xí)公式??)cos(??_________
【總結(jié)】三角函數(shù)的應(yīng)用【學(xué)習(xí)目標】:,體會三角函數(shù)是描述周期現(xiàn)象的重要模型..【重點難點】:建立三角函數(shù)的模型一、預(yù)習(xí)指導(dǎo)1、三角函數(shù)可以作為描述現(xiàn)實世界中____________________________現(xiàn)象的一種數(shù)學(xué)模型.2、利用三角函數(shù)解決實際問題的一般步驟:(1)審題,獲取有用信息;(2)構(gòu)建三角函數(shù)
【總結(jié)】單位圓與三角函數(shù)線教學(xué)目標:1.知識與技能:使學(xué)生掌握如何利用單位圓中的有向線段分別表示任意角的正弦、余弦、正切函數(shù)值,并能利用三角函數(shù)線解決一些簡單的三角函數(shù)問題.2.過程與方法:借助幾何畫板讓學(xué)生經(jīng)歷概念的形成過程,提高學(xué)生觀察、發(fā)現(xiàn)、類比、猜想和實驗探索的能力;在論壇上開展研究性學(xué)習(xí),讓學(xué)生借助所學(xué)知識自己去發(fā)現(xiàn)新問題,并加以解決
【總結(jié)】3.2.1倍角公式一。學(xué)習(xí)要點:二倍角公式及其簡單應(yīng)用。二。學(xué)習(xí)過程:復(fù)習(xí):和角公式.新課學(xué)習(xí):sin2??cos2??tan2??升冪公式:降冪公式:例1、已知5sin2
2024-11-18 16:43