【總結(jié)】§弧度制與角度制(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、長度等于半徑長的圓弧所對的圓心角叫做,這種以弧度為單位來度量角的制度叫做。2、在半徑為r的圓中,弧長為l的弧所對圓心角為α,則。3、完成下列表格度數(shù)
2024-11-27 23:51
【總結(jié)】撰稿教師:李麗麗學(xué)習(xí)目標(biāo)1.了解平面向量基本定理,掌握平面向量基本定理及其應(yīng)用2.利用平面向量基本定理解決有關(guān)問題學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材96頁~98頁,找出疑惑之處)二、新課導(dǎo)學(xué)1、平行向量基本定理2、平面內(nèi)任一向量是否可以用兩個不共線的向量來表示。如圖,設(shè)2
2025-11-09 16:44
【總結(jié)】一、自學(xué)目標(biāo):1、理解半角公式的推導(dǎo)過程2、會運(yùn)用半角公式進(jìn)行相關(guān)的運(yùn)算。二、自學(xué)過程:C2α中令得cosα=2cos22?-1=1-2sin22?,將公式變形可得2?C=;2?S=。2.2?T的推導(dǎo)方法是2?S與2?C兩
2024-11-27 23:35
【總結(jié)】2.1.4數(shù)乘向量一.學(xué)習(xí)要點:數(shù)乘向量、向量共線和三點共線的判斷。二.學(xué)習(xí)過程:一、復(fù)習(xí)引入:1、向量的加法:2、向量的減法:二、講解新課:1、實數(shù)與向量的積引例1:已知非零向量a,作出aaa??和)()(aa???。探究:相同向量相加后,和的長度與方向有什么變化?定義:實數(shù)λ與向量a的積是
2024-11-27 23:46
【總結(jié)】2.1.1向量的概念一.學(xué)習(xí)要點:向量的有關(guān)概念二.學(xué)習(xí)過程:一、復(fù)習(xí):在現(xiàn)實生活中,我們會遇到很多量,其中一些量在取定單位后用一個實數(shù)就可以表示出來,如長度、質(zhì)量等.還有一些量,如我們在物理中所學(xué)習(xí)的位移,是一個既有大小又有方向的量,這種量就是我們本章所要研究的向量.二、新課學(xué)習(xí)::
2024-11-27 23:47
【總結(jié)】2.1.3向量的減法一.學(xué)習(xí)要點:向量的減法二.學(xué)習(xí)過程:一、復(fù)習(xí):向量加法的法則:二、新課學(xué)習(xí):1.用“相反向量”定義向量的減法(1)“相反向量”的定義:(2)規(guī)定:零向量的相反向量仍是零向量.?(?a)
【總結(jié)】弧度制(1)學(xué)習(xí)要點:弧度制以及角度制與之換算關(guān)系。學(xué)習(xí)過程:(一)復(fù)習(xí):度量角的大小第一種單位制—角度制的定義。(二)新課學(xué)習(xí):1.1弧度角的定義:長度等于的弧所對的圓心角稱為的角。如圖:?AOB=1rad
2025-11-09 16:46
【總結(jié)】§單位圓與三角函數(shù)線(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、單位圓:一般地,我們把的圓叫做單位圓。2、三角函數(shù)線:設(shè)任意角α的頂點在坐標(biāo)原點O,始邊與x軸的重合,終邊與單位圓(圓心在原點,半徑為單位長
2024-11-28 01:12
【總結(jié)】§向量在幾何中的應(yīng)用(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1.兩個向量的數(shù)量積:2.平面兩向量數(shù)量積的坐標(biāo)表示:3.向量平
2025-11-10 06:26
【總結(jié)】余弦函數(shù)圖像和性質(zhì)(1)學(xué)案(3)月()日編者:高小燕審稿人:全組人員星期授課類型:新授學(xué)習(xí)目標(biāo),牢記余弦函數(shù)的五個關(guān)鍵點,用五點法熟練作余弦函數(shù)的簡圖。,并用集合符號來表示;、余弦函數(shù)的圖象之間的關(guān)系,能說出函數(shù)co
【總結(jié)】余弦函數(shù)圖像和性質(zhì)(二)(3)月()日編者:高小燕審稿人:全組人員星期授課類型:新授學(xué)習(xí)目標(biāo)根據(jù)余弦函數(shù)圖象的特征,結(jié)合正弦函數(shù)的性質(zhì)學(xué)習(xí)余弦函數(shù)的性質(zhì):單調(diào)性、奇偶性、對稱性和周期性等。課堂內(nèi)容展示自學(xué)指導(dǎo):余弦函數(shù)xycos?
【總結(jié)】誘導(dǎo)公式(一)一、學(xué)習(xí)目標(biāo)1.通過本節(jié)內(nèi)容的教學(xué),使學(xué)生掌握?+?k2,-?角的正弦、余弦和正切的誘導(dǎo)公式及其探求思路,并能正確地運(yùn)用這些公式進(jìn)行任意角的正弦、余弦和正切值的求解、簡單三角函數(shù)式的化簡與三角恒等式的證明;2.通過公式的應(yīng)用,培養(yǎng)學(xué)生的化歸思想,以及信息加工能力、運(yùn)算推理能力、分析問題和解決問題的能力;二、教學(xué)重點、
【總結(jié)】誘導(dǎo)公式(三)一、學(xué)習(xí)目標(biāo)1.通過本節(jié)內(nèi)容的教學(xué),使學(xué)生進(jìn)一步理解和掌握四組正弦、余弦和正切的誘導(dǎo)公式,并能正確地運(yùn)用這些公式進(jìn)行任意角的正弦、余弦和正切值的求解、簡單三角函數(shù)式的化簡與三角恒等式的證明;2.通過公式的應(yīng)用,培養(yǎng)學(xué)生的化歸思想,運(yùn)算推理能力、分析問題和解決問題的能力;二、教學(xué)重點、難點重點:四組誘導(dǎo)公式及這四組誘導(dǎo)公式
【總結(jié)】學(xué)習(xí)目標(biāo)掌握用向量方法建立兩角差的余弦公式.通過簡單運(yùn)用,使學(xué)生初步理解公式的結(jié)構(gòu)及其功能,為建立其它和(差)公式打好基礎(chǔ).學(xué)習(xí)過程一、課前準(zhǔn)備自學(xué)過程:1、cos()????,2、cos()????
2024-11-27 23:39
【總結(jié)】復(fù)習(xí)回顧:?完成下列和角公式sin()????cos()????tan()????sincossincos?????coscossinsin?????思考:若我們可以得到怎樣的結(jié)論????tantan1tantan???
2025-11-09 12:09