【總結(jié)】用待定系數(shù)法求二次函數(shù)的解析式教學(xué)目標(biāo):知識(shí)技能利用已知點(diǎn)的坐標(biāo)用待定系數(shù)法求二次函數(shù)的解析式數(shù)學(xué)思考學(xué)生了解二次函數(shù)的一般式,頂點(diǎn)式,交點(diǎn)式三種形式問題解決學(xué)生了解二次函數(shù)的三種形式,如何靈活的選擇解析式情感態(tài)度在求解過程中,體會(huì)解決問題的方法,培養(yǎng)學(xué)生思維的靈活性重難點(diǎn):重點(diǎn):待定系數(shù)法求二次函數(shù)的
2025-04-17 06:52
【總結(jié)】用待定系數(shù)法確定一次函數(shù)表達(dá)式學(xué)習(xí)目標(biāo):1、使學(xué)生通過實(shí)際問題,感受待定系數(shù)法的意義;2、并學(xué)會(huì)使用待定系數(shù)法求簡(jiǎn)單的函數(shù)關(guān)系式。學(xué)習(xí)重點(diǎn):使學(xué)生能應(yīng)用待定系數(shù)法求一次函數(shù)的解析式。學(xué)習(xí)難點(diǎn):靈活運(yùn)用有關(guān)知識(shí)解決相關(guān)問題。學(xué)習(xí)流程:一、知識(shí)鏈接=2x和y=-x+3的圖象2.你在作這兩個(gè)函數(shù)圖象時(shí),分別描了幾個(gè)點(diǎn)?二、自主探究
2025-06-30 23:47
【總結(jié)】用待定系數(shù)法確定函數(shù)關(guān)系式解決用代數(shù)式表示規(guī)律例1觀察圖,(1)至(4)中小圓圈的擺放規(guī)律,并按這樣的規(guī)律繼續(xù)擺放,記第個(gè)圖中小圓圈的個(gè)數(shù)為,則(用含的代數(shù)式表示)。 時(shí) 時(shí) 時(shí) 時(shí) (1) (2) (3) (4)【觀察與思考】題目提供的圖形的序數(shù)與小圓圈的個(gè)數(shù)滿足(1,5),(
2025-08-17 05:53
【總結(jié)】2021年高中數(shù)學(xué)待定系數(shù)法學(xué)案新人教B版必修1一、三維目標(biāo):1、知識(shí)目標(biāo):使學(xué)生掌握用待定系數(shù)法求解析式的方法;2、能力目標(biāo):(1)嘗試設(shè)計(jì)有關(guān)一次、二次函數(shù)解析式問題,運(yùn)用待定系數(shù)法求解;(2)培養(yǎng)學(xué)生由特殊事例發(fā)現(xiàn)一般規(guī)律的歸納能力。3、情感目標(biāo):(1)通過新舊知識(shí)的認(rèn)識(shí)沖突,激
2024-12-05 06:38
【總結(jié)】初中數(shù)學(xué)九年級(jí)(下冊(cè))圖形的位似已知點(diǎn)O和△ABC.(1)畫射線OA、OB、OC,分別在OA、OB、OC111OAOBOCOAOBOC12===(2)畫△A1B1C1.上取點(diǎn)A1、B1、C1,使.ABCOA1
2025-11-08 00:36
【總結(jié)】......用待定系數(shù)法求遞推數(shù)列通項(xiàng)公式初探摘要:本文通過用待定系數(shù)法分析求解9個(gè)遞推數(shù)列的例題,得出適用待定系數(shù)法求其通項(xiàng)公式的七種類型的遞
2025-06-25 16:48
【總結(jié)】專題1-用待定系數(shù)法求二次函數(shù)的解析式二次函數(shù)的解析式常見的三種表達(dá)形式:一般式:y=ax2+bx+c(a≠0)頂點(diǎn)式:y=a(x-h(huán))2+k(a≠0,(h,k)是拋物線的頂點(diǎn)坐標(biāo))交點(diǎn)式:y=a(x-x1)(x-x2)(a≠0,x1、x2是拋物線與x軸交點(diǎn)的橫坐標(biāo))=ax2+bx+c的圖象的頂點(diǎn)坐標(biāo)為(-2,4),且經(jīng)過原
2025-03-24 05:51
【總結(jié)】待定系數(shù)法求特殊數(shù)列的通項(xiàng)公式靖州一中 蔣利在高中數(shù)學(xué)教學(xué)中,經(jīng)常碰到一些特殊數(shù)列求通項(xiàng)公式,而這些問題在高考和競(jìng)賽中也經(jīng)常出現(xiàn),是一類廣泛而復(fù)雜的問題,歷屆高考常以這類問題作為一道重大的試題。因此,在教學(xué)中,針對(duì)這類問題,提供一些特殊數(shù)列求通項(xiàng)公式范例,幫助同學(xué)們?nèi)嬲莆者@類問題及求解的一般方法?!∏髷?shù)列的通項(xiàng)公式,最為廣泛的的辦法是:把所給的遞推關(guān)系變形,使之成為某個(gè)等差數(shù)列
2025-06-25 16:50
【總結(jié)】2020年高中數(shù)學(xué)待定系數(shù)法學(xué)案新人教B版必修1一、三維目標(biāo):1、知識(shí)目標(biāo):使學(xué)生掌握用待定系數(shù)法求解析式的方法;2、能力目標(biāo):(1)嘗試設(shè)計(jì)有關(guān)一次、二次函數(shù)解析式問題,運(yùn)用待定系數(shù)法求解;(2)培養(yǎng)學(xué)生由特殊事例發(fā)現(xiàn)一般規(guī)律的歸納能力。3、情感目標(biāo):(1)通過新舊知識(shí)的認(rèn)識(shí)沖突,激
2024-11-20 03:13
【總結(jié)】用待定系數(shù)法求二次函數(shù)的解析式【學(xué)習(xí)目標(biāo)】能根據(jù)不同條件選擇①一般式,②頂點(diǎn)式,運(yùn)用待定系數(shù)法靈活求出二次函數(shù)的解析式.【學(xué)習(xí)重點(diǎn)】用待定系數(shù)法求二次函數(shù)的解析式【學(xué)習(xí)難點(diǎn)】根據(jù)題目條件選擇不同形式的二次函數(shù)的解析式【活動(dòng)一】知識(shí)回顧(獨(dú)立思考,大膽嘗試,小組交流——2分鐘)通常我們學(xué)過的二次函數(shù)的解析式
2024-12-09 14:20
【總結(jié)】專題訓(xùn)練求二次函數(shù)的解析式一、已知三點(diǎn)求解析式=ax2+bx+c經(jīng)過(-1,-22),(0,-8),(2,8)三點(diǎn),求它的開口方向、對(duì)稱軸和頂點(diǎn).(0,0),(-1,-1),(1,9)三點(diǎn).求這個(gè)二次函數(shù)的解析式.3.已知二次函數(shù)的圖象經(jīng)過點(diǎn)(-1,-6),(1,-2)和(2,3),求這個(gè)二次函數(shù)的解析式,并求它的開口方向、對(duì)稱軸
2025-06-15 23:56
【總結(jié)】九年級(jí)(上冊(cè))初中數(shù)學(xué)情景引入越高越陡峭?坡面的陡峭程度只與高度有關(guān)嗎?坡面的陡峭程度還與什么量有關(guān)?思考與探索一比較甲和乙,哪個(gè)更陡?坡面的陡峭程度如何描述?甲丙乙比較丙和乙,哪個(gè)更陡?坡面的陡峭程度還可以用哪個(gè)量來描述?這兩個(gè)三角形什么關(guān)系?A1AB1B
2024-12-08 09:43
【總結(jié)】§一次函數(shù)一次函數(shù)第3課時(shí)用待定系數(shù)法求一次函數(shù)解析式1.先設(shè)出函數(shù)的解析式,再根據(jù)條件確定解析式中的_____________,從而得出函數(shù)解析式的方法,叫做待定系數(shù)法.2.由于一次函數(shù)y=kx+b有________兩個(gè)待定系數(shù),因此用待定系數(shù)法時(shí),需要根據(jù)兩個(gè)條件列________________
2025-11-07 23:48
【總結(jié)】杭州師范大學(xué)本科生學(xué)年設(shè)計(jì)(論文)正文第1頁共11頁待定系數(shù)法及其在中學(xué)數(shù)學(xué)的應(yīng)用Applicationofundeterminedcoefficientsintheelementary
2024-12-03 18:55
【總結(jié)】精品資源待定系數(shù)法在不等式中的應(yīng)用在解(證)不等式問題時(shí),最常用的解題技巧是調(diào)整系數(shù)、拆項(xiàng)、補(bǔ)項(xiàng)。但調(diào)整系數(shù)、拆項(xiàng)、補(bǔ)項(xiàng)時(shí),既要考慮不等式的結(jié)構(gòu),又要符合相關(guān)要求,這些就需要待定系數(shù)法兼顧幾方面的要求。下面舉例說明。例1已知函數(shù)y=的最大值為7,最小值為-1,求此函數(shù)的表達(dá)式.分析:求函數(shù)的表達(dá)式,實(shí)際上就是確定系數(shù)m、n
2025-06-25 16:51