【總結(jié)】yxoF2MF1(1)雙曲線標(biāo)準(zhǔn)方程中,a0,b0,但a不一定大于b;有別于橢圓中ab.(2)雙曲線標(biāo)準(zhǔn)方程中,如果x2項的系數(shù)是正的,那么焦點在x軸上;如果y2項的系數(shù)是正的,那么焦點在y軸上.有別于橢圓通過比較分母的大小來判定焦點在哪一坐標(biāo)軸上。(3)雙曲線標(biāo)準(zhǔn)方程中a、b、
2025-11-04 11:43
【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程(教學(xué)設(shè)計)一、教學(xué)目標(biāo):知識與技能:()理解雙曲線的定義及焦點、焦距的意義,掌握雙曲線的標(biāo)準(zhǔn)方程.()根據(jù)不同的題設(shè)條件,正確區(qū)分兩種不同的標(biāo)準(zhǔn)方程.過程與方法:()引導(dǎo)學(xué)生,通過與橢圓的對比去探索雙曲線標(biāo)準(zhǔn)方程的推導(dǎo),加深對數(shù)形結(jié)合思想及事物類比的研究方法的認(rèn)識.()從建立坐標(biāo)系、簡化方程過程中,培養(yǎng)學(xué)生觀察、分析、推理的能力.情感態(tài)
2025-07-14 18:41
【總結(jié)】1、我們知道和等于常數(shù)2a(2a|F1F2|)的點的軌跡是平面內(nèi)與兩定點F1、F2的距離的2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的橢圓1F2F??0,c???0,cXYO??yxM,①如圖(A
2025-08-05 03:58
【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復(fù)習(xí)雙曲
2025-11-08 19:31
【總結(jié)】下頁上頁首頁小結(jié)結(jié)束下頁上頁首頁小結(jié)結(jié)束1.橢圓的定義和等于常數(shù)2a(2a|F1F2|)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的2.引入問題:差等于常數(shù)
2025-11-03 16:45
【總結(jié)】高二年級數(shù)學(xué)科輔導(dǎo)講義(第講)學(xué)生姓名:授課教師:授課時間:專題雙曲線及其標(biāo)準(zhǔn)方程目標(biāo)掌握雙曲線的定義、焦點、離心率;漸進(jìn)線等概念重難點雙曲線的定義和標(biāo)準(zhǔn)方程??键c求雙曲線的標(biāo)準(zhǔn)方程;求弦中點的軌跡方程第一部分、基礎(chǔ)知識梳理(1
2025-07-15 03:56
【總結(jié)】雙曲線的標(biāo)準(zhǔn)方程一、填空題1.3m5是方程x2m-5+y2m2-m-6=1表示的圖形為雙曲線的________條件.2.雙曲線ky2-8kx2+8=0的一個焦點為(0,3),則k=________.3.已知雙曲線x26-y23=1的焦點為F1、F2,點M在雙曲線上且M
2025-11-06 17:58
【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程(1)復(fù)習(xí)與問題1,橢圓的第一定義是什么?平面內(nèi)與兩定點F1,F(xiàn)2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓。F1F2MM思考到平面上兩定點F1,F(xiàn)2的距離之差(小于|F1F2|)為非零常數(shù)的點的軌跡是什么?
2025-01-14 07:30
【總結(jié)】圓錐曲線與方程第二章§3雙曲線雙曲線及其標(biāo)準(zhǔn)方程第二章課堂典例探究2課時作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí),會推導(dǎo)雙曲線的標(biāo)準(zhǔn)方程.2.會用待定系數(shù)法求雙曲線的標(biāo)準(zhǔn)方程.類比橢圓的定義我們可以給出雙曲線的定義在平面內(nèi)到兩個定點F1、F2距離之_____的絕對值等
2025-11-07 23:24
【總結(jié)】教學(xué)設(shè)計方案課題名稱雙曲線及其標(biāo)準(zhǔn)方程姓名王菲菲工作單位河北黃驊中學(xué)年級學(xué)科高二數(shù)學(xué)教材版本人教A版一、教學(xué)內(nèi)容分析在高中數(shù)學(xué)中,雙曲線及其標(biāo)準(zhǔn)方程的課程,在分析初等函數(shù)之前,是了解笛卡爾坐標(biāo)圖線的重點。他是為培養(yǎng)學(xué)生對于坐標(biāo)圖線了解函數(shù)關(guān)系打下基礎(chǔ),其關(guān)鍵在于了解學(xué)生對于圖像認(rèn)識的能力,培養(yǎng)學(xué)生用數(shù)軸圖形了解函數(shù)信息的能力。現(xiàn)如今在數(shù)學(xué)
2025-08-05 04:13
【總結(jié)】y(第二課時)xoMF2F1(第二課時)雙曲線及其標(biāo)準(zhǔn)方程系數(shù)哪個為正,焦點就在哪個軸上平面內(nèi)與兩個定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)(小于|F1F2|)的點的軌跡????12-,0,0,F(xiàn)cFc????1????20,-0,,F(xiàn)cFc標(biāo)準(zhǔn)方程
2025-11-10 16:17
【總結(jié)】教學(xué)教法分析課前自主導(dǎo)學(xué)易錯易誤辨析課堂互動探究當(dāng)堂雙基達(dá)標(biāo)課后知能檢測教師備課資源2.2雙曲線2.雙曲線及其標(biāo)準(zhǔn)方程●三維目標(biāo)1.知識與技能(1
2025-11-08 17:15
【總結(jié)】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)雙曲線的標(biāo)準(zhǔn)方程(2)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):使學(xué)生進(jìn)一步了解雙曲線的定義,熟記雙曲線的標(biāo)準(zhǔn)方程教學(xué)重點:根據(jù)已知條件求雙曲線的標(biāo)準(zhǔn)方程.橢圓和雙曲線標(biāo)準(zhǔn)形式中a,b,c間的關(guān)系.教學(xué)難點:用雙曲線的標(biāo)準(zhǔn)方程處理簡單的實際問題.教學(xué)過程:一、復(fù)習(xí)提問1.雙曲線的標(biāo)準(zhǔn)方程:
2024-11-20 00:31
【總結(jié)】定義圖象方程焦點系yoxF1F2··yoF1F2··|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2
2025-11-10 15:32
【總結(jié)】......雙曲線漸近線方程百科名片??雙曲線漸近線方程雙曲線漸近線方程,是一種幾何圖形的算法,這種主要解決實際中建筑物在建筑的時候的一些數(shù)據(jù)的處理。雙曲線的主要特點:無限接近,但不可以相交。分為鉛直漸
2025-06-23 22:40