【總結】向量數(shù)量積的運算律復習回顧正射影的數(shù)量cosla??(內積)cos,??ababa·b=:(1).a?b?a?b=0(2).a?a=|a|2或aaa??||(3).cos?=||||baba?范圍0≤〈a,b〉≤π;平面
2024-11-18 12:10
【總結】向量數(shù)量積的物理背景與定義復習回顧x1+x2y1+y2x1-x2y1-y2λx1λy11、若向量a=(x1,y1),b=(x2,y2)則向量a+b=(,)
2024-11-17 17:33
【總結】2020/12/25§(一)2020/12/25復習思考?、標準方程是什么??平面上到兩個定點的距離的和(2a)等于定長(大于|F1F2|)的點的軌跡叫橢圓。?定點F1、F2叫做橢圓的焦點。?兩焦點之間的距離叫做焦距(2c)。)0(12222????bab
2024-11-18 12:09
【總結】120903490寫出滿足下列條件的角的集合.()銳角()到的角()第一象限的角()小于的角我們在平面幾何中研究角的度量,當時是用度做單位來度量角,的角是如何定義的?1我們把用度做單位來度量角的制度叫做角度制。
【總結】平面向量的數(shù)量積學習目標:、夾角平面向量的數(shù)量積的定義已知兩個非零向量a和b,它們的夾角為?,我們把數(shù)量叫做a與b的數(shù)量積(或內積),記作a·b,即?cos||||ba?c
2024-11-18 08:49
【總結】不等式的性質素材?一.復習?不等式的基本原理及含義?a-b0ab?a-b=0a=b?a-bab?四大作用:?(1)比較兩個實數(shù)的大小,(2)推導不等式的性質
【總結】551ABCOxy2020年12月24日星期四11時58分50秒勤能補拙如果C≠0,可取(0,0);如果C=0,可取(1,0)或(0,1).二元一次不等式Ax+By+C0在平面直角坐標系中表示直線Ax+By+C=0某一側所有點組成的平面區(qū)域。
2024-11-17 11:59
【總結】兩角和與差的正切朝花夕拾目標1目標2目標1和角與差角正切公式的推導??tantantan1tantan?????????????tantantan1tantan???????????目標2和角與差角正切公式的應用????tantantan1tantan??
2024-11-17 15:11
【總結】及坐標表示(第2課時)學習目標:(3)會根據(jù)向量的坐標,判斷向量是否共線.(1)理解平面向量的坐標的概念;(2)掌握平面向量的坐標運算;兩個非零向量平行(共線)的充要條件????1122,,,(0)axybxyb???設當且僅當存在實數(shù),使?ba??//ab
【總結】等比數(shù)列...學習目標等比數(shù)列的定義定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù)(指與n無關的數(shù)),這個數(shù)列就叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母q(q≠0)表示。??11nnnnaaqqaa
【總結】復習1、平面向量基本定理的內容是什么?2、什么是平面向量的基底?如果e1,e2是同一平面內的兩個不共線的向量,那么對于這一平面內的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2平面向量基本定理:不共線的平面向量e1,e2叫做這一平面內所有向量的一組基底.
【總結】函數(shù)的應用(一)學案【預習達標】1.形如f(x)=叫一次函數(shù),當為增函數(shù);當為減函數(shù)。2.二次函數(shù)的解析式三種常見形式為;;。3.f(x)=a+bx+c(a0),當a
2024-12-08 01:49
【總結】復習:共線向量基本定理:向量與向量共線當且僅當有唯一一個實數(shù)使得(0)aa?b?ab??abbb0??0??已知平行四邊形ABCD中,M,N分別是BC,DC的中點且,用表
2024-11-17 12:03
【總結】兩角和與差的正弦沈陽二中數(shù)學組?掌握兩角和與差的正弦公式.?熟練應用公式求值,化簡和證明.?熟練掌握公式正,反兩方面的應用.學習目標?如何用α或β的正弦,余弦來表示α-β或α+β的正弦??兩角和與差的正弦公式是怎樣證明的??兩角和與差的正弦公式有什么特點?
【總結】(一)沈陽二中數(shù)學組掌握用向量證明問題的方法.掌握兩角和與差的余弦公式.熟練應用公式求值和證明及公式正,反兩方面的應用.本節(jié)重點是應用公式求值和證明.本節(jié)難點是公式的推導.學習目標自學提綱1、如何用α或β的正弦,余弦來表示α-β或α+β的余弦?2、兩角和與差的余弦公式是怎樣