【總結(jié)】1.比較實(shí)數(shù)大小的依據(jù):作差—變形—判斷符號(hào)—定結(jié)論2.比較實(shí)數(shù)大小的基本步驟:a-b0?abab?a-b0a=b?a-b=0問題1:如何比較兩數(shù)大?。?)4)(2()5)(3(.1的大小與比較例????aaaa:作差法比較大小的步驟作差變
2025-07-26 12:19
【總結(jié)】不等式的性質(zhì)?學(xué)習(xí)要求:?.?.?.?一.復(fù)習(xí)?不等式的基本原理及含義?a-b0ab?a-b=0a=b?a-bab?四大作用:?(1)
2024-11-17 14:49
【總結(jié)】第1課時(shí)不等式的性質(zhì)首頁課件目錄末頁2022年春人教版數(shù)學(xué)七年級(jí)下冊(cè)課件第九章不等式與不等式組不等式的性質(zhì)第1課時(shí)不等式的性質(zhì)第1課時(shí)不等式的性質(zhì)首頁課件目錄末頁第九章不等式與不等式組不等式知識(shí)管理學(xué)
2025-06-12 08:13
【總結(jié)】3.4不等式的實(shí)際應(yīng)用學(xué)習(xí)目標(biāo)理.2.重點(diǎn)是不等式的實(shí)際應(yīng)用.3.難點(diǎn)是建立不等式問題模型,解決實(shí)際問題.課堂互動(dòng)講練知能優(yōu)化訓(xùn)練不等式的實(shí)際應(yīng)用課前自主學(xué)案3.4課前自主學(xué)案溫故夯基1.作差比較法可以比較兩數(shù)(式)的大小,也可證明不等式.
2025-01-06 16:33
【總結(jié)】不等式的性質(zhì)(二)一、復(fù)習(xí)引入:1、兩個(gè)數(shù)大小比較的方法,步驟2、兩個(gè)正數(shù)的和是數(shù);積是數(shù);正數(shù)的相反數(shù)是數(shù);負(fù)數(shù)的相反數(shù)是數(shù);兩同號(hào)的數(shù)的積是數(shù);兩異號(hào)的數(shù)的積是數(shù);二、學(xué)生自學(xué)、教師輔導(dǎo):1、不等式的五個(gè)性質(zhì)2、每個(gè)性質(zhì)的證明思維、成立
2024-10-19 08:40
【總結(jié)】不等式的基本性質(zhì)1、如果a=b,b=c,那么a=c()依據(jù):熱身運(yùn)動(dòng)等式的傳遞性下列說法是否正確,并說明理由等式的基本性質(zhì)22、如果a=b,那么a+3=b+3()依據(jù):3、如果a=b,那么3a=3b或()
2025-05-09 22:18
【總結(jié)】高次不等式和分式不等式的解法一.高次不等式的解法對(duì)于不等式(x-a1)(x-a2)(x-an)0的解法是穿根標(biāo)線法a1a2an例1解下列不等式:(1)(x+1)(x-1)(x-2)0(2)x(x-1)2(x+1)3(x+2)0(3)(x-3)(x
2025-03-13 05:16
【總結(jié)】第36講不等式的性質(zhì)與基本不等式及應(yīng)用等關(guān)系,了解不等式(組)的實(shí)際背景.,掌握比較兩個(gè)實(shí)數(shù)大小的一般步驟.,會(huì)用基本不等式解決簡(jiǎn)單的最大(?。┲祮栴}.x0,則x+的最小值為.2x22α∈(0,),β∈[0,],那么2α-的取
2024-11-09 04:21
【總結(jié)】一元二次不等式及其解法復(fù)習(xí)::ax2+bx+c=0得根.二次函數(shù):y=ax2+bx+c的圖像.:ax2+bx+c0的解集.a≠0求解一元二次不等式的三步驟:例:解不等式-x2+10x-240解方程x2-10x+24=0得:x1=4,x2=6作出函數(shù)
2024-11-17 05:40
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-實(shí)際應(yīng)用》審校:王偉?掌握建立不等式模型解決實(shí)際問題.?教學(xué)重點(diǎn):?掌握建立不等式模型解決實(shí)際問題教學(xué)目標(biāo)例1.一般情況下,建筑民用住宅時(shí)。民用住宅窗戶的總面積應(yīng)小于該住宅的占地面積,而窗戶的總面積與占地面積的比值越大
2025-01-15 12:36
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《不等式的性質(zhì)》審校:王偉教學(xué)目標(biāo)?1、掌握不等式的性質(zhì)及其推論,并能證明這些結(jié)論。?2、進(jìn)一步鞏固不等式性質(zhì)定理,并能應(yīng)用性質(zhì)解決有關(guān)問題。?教學(xué)重點(diǎn):?1、不等式的性質(zhì)及證明。?2、不等式的性質(zhì)及應(yīng)用性質(zhì)1:如果ab
2024-11-11 05:50
【總結(jié)】 不等式的性質(zhì)質(zhì)不等式的性質(zhì)1 不等式兩邊加(或減)同一個(gè)數(shù)(或式子),不等號(hào)的方向 .?即:如果ab,那么a±c b±c.?不等式的性質(zhì)2 不等式兩邊乘(或除以)同一個(gè) 數(shù),不等號(hào)的方向不變.?即:如果ab,c0,那么a
2025-06-12 00:55
【總結(jié)】《不等關(guān)系與不等式》教學(xué)目標(biāo)?1.使學(xué)生感受到在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,在學(xué)生了解了一些不等式(組)產(chǎn)生的實(shí)際背景的前提下,能列出不等式與不等式組.?2.學(xué)習(xí)如何利用不等式表示不等關(guān)系,利用不等式的有關(guān)基本性質(zhì)研究不等關(guān)系;?3.通過學(xué)生在學(xué)習(xí)過程中的感受、體驗(yàn)、認(rèn)識(shí)狀況及理解程度,注重問題情境、實(shí)際背景的設(shè)置,
【總結(jié)】不等式的性質(zhì)第2課時(shí)【基礎(chǔ)梳理】“≤”“≥”表示什么:(1)像a≥b或a≤b這樣的式子,也經(jīng)常用來表示兩個(gè)數(shù)量的_____關(guān)系.(2)“x≥a”表示“____”或者“____”;“x≤a”表示“____”或者“____”.大小xax=axax=a
2025-06-12 14:07
【總結(jié)】2022年春人教版數(shù)學(xué)七年級(jí)下冊(cè)課件第九章不等式與不等式組不等式的性質(zhì)第2課時(shí)利用不等式的性質(zhì)解不等式第九章不等式與不等式組不等式知識(shí)管理學(xué)習(xí)指南歸類探究當(dāng)堂測(cè)評(píng)分層作業(yè)不等式的性質(zhì)第2課時(shí)利用不等式
2025-06-19 12:14