【總結(jié)】,p,xypxayb.abab如果兩個(gè)向量不共線,則向量與向量共面的充要條件是存在實(shí)數(shù)對(duì),,使=+共線向量定理:復(fù)習(xí):共面向量定理:0//a.abbabb???對(duì)空間任意兩個(gè)向量、(),的充要條件是
2025-06-12 19:02
【總結(jié)】平面向量的正交分解及坐標(biāo)表示復(fù)習(xí)平面向量基本定理如果e1,e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使a=λ1e1+λ2e2(1)我們把不共線向量e1、e2叫做表示這一平面內(nèi)所有向量的一組基底;(2)基底不唯一,關(guān)鍵
2025-07-24 04:29
【總結(jié)】海鹽高級(jí)中學(xué)高新軍復(fù)習(xí)引入:?若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,則對(duì)于這一平面內(nèi)的任意向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個(gè)單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問題是:⑴向量的和、差、數(shù)乘、模的運(yùn)算
2025-08-05 06:24
【總結(jié)】坐標(biāo)表示、模、夾角復(fù)習(xí)引入1.平面向量的數(shù)量積(內(nèi)積)的定義:復(fù)習(xí)引入1.平面向量的數(shù)量積(內(nèi)積)的定義:.)(cos||||或內(nèi)積的數(shù)量積與叫做,我們把數(shù)量夾角為它們的,和已知兩個(gè)非零向量bababa??復(fù)習(xí)引入1.平面向量的數(shù)量積
2024-10-18 14:26
【總結(jié)】平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)表示1.平面向量基本定理的內(nèi)容?什么叫基底?a=xi+yj.有且只有一對(duì)實(shí)數(shù)x、y,使得2.分別與x軸、y軸方向相同的兩單位向量i、j能否作
2024-11-09 09:20
【總結(jié)】OxyijaA(x,y)a兩者相同3.兩個(gè)向量相等的充要條件,利用坐標(biāo)如何表示?坐標(biāo)(x,y)一一對(duì)應(yīng)向量a1.以原點(diǎn)O為起點(diǎn)作OA=a,點(diǎn)A的位置由誰(shuí)確定?2.點(diǎn)A的坐標(biāo)與向量a的坐標(biāo)有什么關(guān)系?由a唯一確定a=bx1=x2且y1=y2
2025-08-05 06:17
【總結(jié)】空間向量運(yùn)算的坐標(biāo)表示(二)O?xyz??,,ijk為單位正交基底以建立空間直角坐標(biāo)系O—xyz(,,)xyzpxiyjzk?????,,ijk為基
2024-11-09 03:12
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件26《平面向量的坐標(biāo)表示與運(yùn)算》?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析平面向量的坐標(biāo)表示要點(diǎn)·疑點(diǎn)·考點(diǎn)
2024-11-10 00:27
【總結(jié)】第二章§3&理解教材新知把握熱點(diǎn)考向應(yīng)用創(chuàng)新演練知識(shí)點(diǎn)一知識(shí)點(diǎn)二考點(diǎn)一考點(diǎn)二考點(diǎn)三3.1&空間向量的標(biāo)準(zhǔn)正交分解與坐標(biāo)表示空間向量基本定理學(xué)生小李
2025-06-12 19:01
【總結(jié)】高考總復(fù)習(xí).理科.數(shù)學(xué)第八章平面向量高考總復(fù)習(xí).理科.數(shù)學(xué)考綱分解解讀高考總復(fù)習(xí).理科.數(shù)學(xué)(1)了解向量的實(shí)際背景.(2)理解平面向量的概念,理解兩個(gè)向量相等的含義.(3)理解向量的幾何表示.2.(1)掌握向量加法、減法的運(yùn)算,并理解其幾何意義.
2025-08-01 17:58
【總結(jié)】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=a
2024-11-17 17:19
【總結(jié)】......平面向量基本定理及坐標(biāo)表示1.平面向量基本定理如果e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量a,存在唯一一對(duì)實(shí)數(shù)λ1、λ2,使a=λ1e1+λ2e2,其中,不共線的向量e1、e2叫做表示這一平面內(nèi)所有
2025-06-30 20:18
【總結(jié)】摘要流動(dòng)性是證券市場(chǎng)的生命力所在,也是決定市場(chǎng)質(zhì)量的有效衡量指標(biāo)之一。市場(chǎng)流動(dòng)性的提高,不僅有助于活躍市場(chǎng),吸引投資者,更重要的是有利于穩(wěn)定市場(chǎng)價(jià)格、保證金融市場(chǎng)的正常運(yùn)轉(zhuǎn)并促進(jìn)資源有效配置。不僅如此,流動(dòng)性也被證明是資產(chǎn)價(jià)格的重要決定因素。本文基于金融市場(chǎng)微觀結(jié)構(gòu)理論,對(duì)中國(guó)股市流動(dòng)性風(fēng)險(xiǎn)問題展開了系統(tǒng)
2025-07-29 12:58
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示、模、夾角一.復(fù)習(xí)回顧:?jiǎn)栴}:回憶一下,向量的數(shù)量積?又如何用數(shù)量積、長(zhǎng)度來反映夾角?向量的運(yùn)算律有哪些?平面向量的數(shù)量積有那些性質(zhì)?答案:babababa????????cos,cos運(yùn)算律有:)()().(2bababa????????abba??
2025-01-20 04:59
【總結(jié)】課時(shí)作業(yè)課堂互動(dòng)探究課前自主回顧與名師對(duì)話高考總復(fù)習(xí)·課標(biāo)版·A數(shù)學(xué)(理)課時(shí)作業(yè)課堂互動(dòng)探究課前自主回顧與名師對(duì)話高考總復(fù)習(xí)·課標(biāo)版·A數(shù)學(xué)(理)考綱要求考情分析本定理及其意義.2.掌握平面向量的正交分解及其坐標(biāo)表示.3.會(huì)用坐
2025-07-24 07:57