【總結(jié)】完美WORD格式專題三:排列、組合及二項(xiàng)式定理一、排列、組合與二項(xiàng)式定理【基礎(chǔ)知識(shí)】(加法原理).(乘法原理).==.(n,m∈N*,且m≤n).===(n,m∈N*,且m≤n).:(1)=;(2)+=(3).:.:
2025-06-25 22:56
【總結(jié)】§排列、組合及其應(yīng)用要點(diǎn)梳理(1)排列的定義:從n個(gè)的元素中取出m(m≤n)個(gè)元素,按照一定的排成一列,叫做從n個(gè)不同的元素中取出m個(gè)元素的一個(gè)排列.(2)排列數(shù)的定義:從n個(gè)不同的元素中取出m(m≤n)個(gè)元素的的個(gè)數(shù)叫做從
2025-08-05 19:06
【總結(jié)】排列、組合的應(yīng)用問題高考要求:,并能用它們分析和解決一些簡單的應(yīng)用問題。,掌握排列數(shù)公式。,掌握組合數(shù)計(jì)算公式及組合數(shù)的性質(zhì)。3名男生,4名女生,在下列不同要求下求不同的排列方法總數(shù).(1)甲不在排頭,乙不在排尾.(2)男、女生各不相鄰.(3)甲站中間,乙、丙必須相鄰。(4)甲與乙、丙二人
2024-11-09 03:17
【總結(jié)】排列組合,1,2,3,4,5可以組成多少個(gè)沒有重復(fù)數(shù)字五位奇數(shù).解:由于末位和首位有特殊要求,應(yīng)該優(yōu)先安排,以免不合要求的元素占了這兩個(gè)位置.先排末位共有然后排首位共有最后排其它位置共有由分步計(jì)數(shù)原理得練習(xí)題:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆里,問有多少不同的種法?
2025-08-05 18:16
【總結(jié)】第一篇:排列組合教案.(寫寫幫整理) 數(shù)學(xué)廣角 《課題一 排列組合》教學(xué)設(shè)計(jì) 吉林省撫松縣外國語學(xué)校李乃香 教學(xué)內(nèi)容: 《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(二年級(jí)上冊)》第99頁的的內(nèi)容-...
2024-10-25 18:07
【總結(jié)】15級(jí)高二數(shù)學(xué)導(dǎo)學(xué)案1兩個(gè)基本計(jì)數(shù)原理(1)一、課前自主學(xué)習(xí):引入:(1)從甲地到乙地有3條公路、2條鐵路,某人要從甲地到乙地,共有多少種不同的方法?(2)從甲地到乙地有3條道路,從乙地到丙地有2條道路,那么從甲地經(jīng)乙地到丙地共有多少種不同的方法?1、分類計(jì)數(shù)原理:完成一件事有n類方式,在第1類方
2025-08-05 00:06
【總結(jié)】課時(shí)作業(yè)(一)1.衡水二中高一年級(jí)共8個(gè)班,高二年級(jí)共6個(gè)班,從中選一個(gè)班級(jí)擔(dān)任學(xué)校星期一早晨升旗任務(wù),共有的安排方法種數(shù)是( )A.8 B.6C.14 D.48答案 C解析 一共有14個(gè)班,從中選1個(gè),∴共有14種.2.教學(xué)大樓共有四層,每層都有東西兩個(gè)樓梯,由一層到四層共有的走法種數(shù)是( )A.32 B.23C.42 D.2
2025-07-23 03:44
【總結(jié)】排列組合基礎(chǔ)知識(shí)及習(xí)題分析在介紹排列組合方法之前我們先來了解一下基本的運(yùn)算公式!C5取3=(5×4×3)/(3×2×1)C6取2=(6×5)/(2×1)通過這2個(gè)例子看出CM取N公式是種子數(shù)M開始與自身連續(xù)的N個(gè)自然數(shù)的降序乘積做為分子。以取值N的階層作為分母P53=5×4
2025-06-25 23:11
【總結(jié)】第一篇:排列組合典型例題 典型例題一 例1用0到9這10個(gè)數(shù)字.可組成多少個(gè)沒有重復(fù)數(shù)字的四位偶數(shù)? 分析:這一問題的限制條件是:①?zèng)]有重復(fù)數(shù)字;②數(shù)字“0”不能排在千位數(shù)上;③個(gè)位數(shù)字只能是0...
2024-10-21 11:00
【總結(jié)】排列組合教材分析四色問題?任意一張地圖,用一種顏色對(duì)一個(gè)地區(qū)著色,那么一共只需要四種顏色就能保證每兩個(gè)相鄰的地區(qū)顏色不同。穩(wěn)定的婚姻問題?如果一個(gè)村子里每一個(gè)女孩都恰好認(rèn)識(shí)k個(gè)男孩,并且每一個(gè)男孩也恰好認(rèn)識(shí)k個(gè)女孩,那么每一個(gè)女孩都可以嫁給她認(rèn)識(shí)的一個(gè)男孩,并且每一個(gè)男孩都可以娶一個(gè)他認(rèn)識(shí)的女孩.穩(wěn)定的婚姻問題?但是
2025-08-15 22:11
【總結(jié)】從n個(gè)不同元素中,任取m個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.:從n個(gè)不同元素中,任取m個(gè)元素,并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合.:::)!(!)1()2)(1(mnnmnnnnAmn????????排列與組合
2025-03-05 11:20
【總結(jié)】第一篇:有趣的排列組合 三年級(jí)上冊《數(shù)學(xué)廣角》 有趣的排列組合教學(xué)內(nèi)容:人教版三年級(jí)上冊數(shù)學(xué)廣角 教學(xué)目標(biāo): 1、結(jié)合具體情景,通過觀察、猜測、實(shí)驗(yàn)等數(shù)學(xué)活動(dòng),能有序地找 出簡單的組合數(shù)。 ...
2024-10-25 17:55
【總結(jié)】│排列、組合│知識(shí)梳理知識(shí)梳理1.排列(1)定義:從n個(gè)不同元素中任取m(m≤n)個(gè)元素,排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.(2)排列數(shù)定義:從n個(gè)不同元素中取出m(m≤n)個(gè)元素的的個(gè)數(shù),叫做從
2025-08-05 07:24
【總結(jié)】排列組合測試卷1.7個(gè)人站一隊(duì),其中甲在排頭,乙不在排尾,則不同的排列方法有()A.720 B.600 C.576 D.3242.某學(xué)校推薦甲、乙、丙、丁4名同學(xué)參加A、B、C三所大學(xué)的自主招生考試。每名同學(xué)只推薦一所大學(xué),()3.6個(gè)人分乘兩輛不
2025-08-05 07:38
【總結(jié)】排列組合方法一解決排列組合問題的幾種思想1.主元思想某單位安排7位工作人員在10月1日至10月7日值班,每人值班1天,其中甲乙2人都不安排在10月1日和10月7日,則不同安排方法有多少種?解析先排甲乙,有5×4=20種再排其他5人,有5×4×3×2×1=120種共120
2025-08-18 16:59