【總結(jié)】3、數(shù)列求和數(shù)列求和的方法.(1)公式法:?等差數(shù)列的前n項求和公式=__________________=_______________________.?等比數(shù)列的前n項和求和公式(2),數(shù)列的通項公式能夠分解成幾部分,一般用“分組求和法”.(3),數(shù)列的通項公式能夠分解成等差數(shù)列和等比數(shù)列的乘積,一般用“錯
2025-03-25 02:52
【總結(jié)】割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體而無所失矣.溫馨提示:請點擊相關(guān)欄目。整知識·萃取知識精華整方法·啟迪發(fā)散思維考向分層突破一考向分層突破二考向分層突破三整知識萃取知識精華結(jié)束放映返回導(dǎo)航頁
2025-01-13 09:23
【總結(jié)】數(shù)列與不等式證明方法歸納共歸納了五大類,16種放縮技巧,30道典型例題及解析,供日后學(xué)習(xí)使用。1、數(shù)列求和(1)放縮成等比數(shù)列再求和(2)放縮成差比數(shù)列再錯位相減求和(3)放縮成可裂項相消再求和(4)數(shù)列和比大小可比較單項2、公式、定理(1)利用均值不等式(2)利用二項式定理(3)利用不動點定理(4)利用二次函數(shù)性質(zhì)3、累加、
2025-06-18 05:08
【總結(jié)】1題目:數(shù)列的求和主講人:鄧盛2,能熟練運用這些方法解決問題。,歸納總結(jié)能力,聯(lián)想、轉(zhuǎn)化、化歸能力,探究創(chuàng)新能力。讓學(xué)生認(rèn)識到事物是普遍聯(lián)系,發(fā)展變化的。二.教學(xué)目標(biāo):一、教學(xué)重點:掌握特殊數(shù)列的求和方法,主要學(xué)習(xí)分組求和法,錯位相減法,裂項相消法。31、2+4+6+
2025-09-19 08:08
【總結(jié)】最新高考數(shù)列求和方法總結(jié)1、公式法:如果一個數(shù)列是等差、等比數(shù)列或者是可以轉(zhuǎn)化為等差、等比數(shù)列的數(shù)列,我們可以運用等差、等比數(shù)列的前n項和的公式來求.①等差數(shù)列求和公式:②等比數(shù)列求和公式:常見的數(shù)列的前n項和:,1+3+5+……+(2n-1)=,等.2、倒序相加法:類似于等差數(shù)列的前n項和的公式的推導(dǎo)方法。如果一個數(shù)列,與首末兩項等距的兩項之和等于首末兩
2025-06-07 19:34
【總結(jié)】數(shù)列求和的基本方法與技巧福州三中金山校區(qū)林繼楓(350008)數(shù)列是高中代數(shù)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。在高考和各種數(shù)學(xué)競賽中都占有重要的地位。數(shù)列求和是數(shù)列的重要內(nèi)容之一,除了等差數(shù)列和等比數(shù)列有求和公式外,大部分?jǐn)?shù)列的求和都需要一定的技巧。下面,就幾個方面來談?wù)剶?shù)列求和的基本方法和技巧。一、利用常用求和公式求和(定義法)
2025-01-14 02:19
【總結(jié)】數(shù)列求和—裂項相消專題裂項相消的實質(zhì)是將數(shù)列中的每項(通項)分解,然后重新組合,使之能消去一些項,以達到求和的目的.常見的裂項相消形式有:1.┈┈(分母可分解為的系數(shù)相同的兩個因式)2.3.4.5.┈┈,,且,求數(shù)列的前n項的和.
2025-03-25 02:51
【總結(jié)】數(shù)列求和匯總答案一、利用常用求和公式求和利用下列常用求和公式求和是數(shù)列求和的最基本最重要的方法.1、等差數(shù)列求和公式:2、等比數(shù)列求和公式:例1、已知,求的前n項和.解:由由等比數(shù)列求和公式得(利用常用公式)===1-練習(xí):求的和。解:由等差數(shù)列的求和公式得二、錯位相減法求和這種方法是在推導(dǎo)
2025-08-05 07:40
【總結(jié)】“數(shù)列通項公式及數(shù)列求和”課例一、設(shè)計理念首先通過解剖導(dǎo)學(xué)案,讓學(xué)生經(jīng)歷知識網(wǎng)絡(luò)的自主構(gòu)建,然后在匯報和例題解法展示活動中進行知識網(wǎng)絡(luò)的完善和思想、方法的總結(jié)提升,以導(dǎo)學(xué)案為載體、立足過程、增強解決數(shù)列綜合題的能力。二、教材分析㈠教材的地位和作用數(shù)列是高中數(shù)學(xué)的一個重要組成部分,數(shù)列是函數(shù)概念的繼續(xù)和延伸,幾乎每年高考試卷中都會出現(xiàn)一道數(shù)列綜合題,且這一部分內(nèi)容與函數(shù)、幾何
2025-04-17 01:43
【總結(jié)】精品資源普通高中課程標(biāo)準(zhǔn)實驗教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座30)—數(shù)列求和及數(shù)列實際問題一.課標(biāo)要求:1.探索并掌握一些基本的數(shù)列求前n項和的方法;2.能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的數(shù)列的通項和遞推關(guān)系,并能用有關(guān)等差、等比數(shù)列知識解決相應(yīng)的實際問題。二.命題走向數(shù)列求和和數(shù)列綜合及實際問題在高考中占有重要的地位,一般情況下都是出一道解答題
2025-03-25 06:47
【總結(jié)】......數(shù)列求和專題復(fù)習(xí)一、公式法:::;;例1:已知,求的前項和.例2:設(shè),,求的最大值.二
【總結(jié)】§等差數(shù)列一.課程目標(biāo);;,并能用等差數(shù)列的有關(guān)知識解決相應(yīng)的問題;.二.知識梳理如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示.數(shù)學(xué)語言表達式:an+1-an=d(n∈N*,d為常數(shù)),或an-an-1=d(n≥2,d為常數(shù)).2.
2025-03-25 06:56
【總結(jié)】數(shù)列1、等差數(shù)列與等比數(shù)列:常設(shè)首項、(公差)比為基本量,借助于消元思想及解方程組思想等。轉(zhuǎn)化為“基本量”是解決問題的基本方法。1)若數(shù)列是等差數(shù)列,則數(shù)列是等比數(shù)列,公比為,其中是常數(shù),是的公差。(a0且a≠1);2)若數(shù)列是等比數(shù)列,且,則數(shù)列是等差數(shù)列,公差為,其中是常數(shù)且,是的公比。3)若既是等差數(shù)列又是等比數(shù)列,則是非零常數(shù)數(shù)列。等
2025-07-23 11:20
【總結(jié)】復(fù)習(xí)課: 數(shù)列求和 一、【知識梳理】 1.等差、等比數(shù)列的求和公式,公比含字母時一定要討論. 2.錯位相減法求和:如:已知成等差,成等比,求. 3.分組求和:把數(shù)列的每一項分成若干項,使其轉(zhuǎn)...
2024-10-11 19:48
【總結(jié)】數(shù)列求和的方法將一個數(shù)列拆成若干個簡單數(shù)列,然后分別求和.將數(shù)列相鄰的兩項(或若干項)并成一項(或一組)得到一個新數(shù)列(容易求和).一、拆項求和二、并項求和例求和Sn=1×2+2×3+…+n(n+1).例求和Sn=1-2+3-4+5-6+…+(-1)n+1
2024-11-11 05:50