【總結(jié)】二次函數(shù)復(fù)習(xí)注意:當(dāng)二次函數(shù)表示某個實際問題時,還必須根據(jù)題意確定自變量的取值范圍.:形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù)自變量x的取值范圍是:任意實數(shù):(1)二次函數(shù)的一般形式:函數(shù)y=ax2+bx+c(a≠0)注意:它的特殊形式:當(dāng)b=0,c
2024-11-21 23:05
【總結(jié)】二次函數(shù)y=ax2+k圖象復(fù)習(xí)二次函數(shù)y=ax2的圖象是什么形狀呢?什么確定y=ax2的性質(zhì)?通常怎樣畫一個函數(shù)的圖象?我們來畫最簡單的二次函數(shù)y=2x2的圖象。還記得如何用描點(diǎn)法畫一個函數(shù)的圖象嗎?x…-2-1012…
2024-11-21 00:05
【總結(jié)】二次函數(shù)y=ax2+bx+c圖象和性質(zhì)(4)xyoy=ax2y=ax2+ky=a(x–h)2y=a(x–h)2+k上下平移左右平移上下平移左右平移在上述移動中圖象的開口方向、形狀、頂點(diǎn)坐標(biāo)、對稱軸,哪些有變化?哪些沒有變化?有變化的:拋
2024-11-20 23:47
【總結(jié)】第一篇:二次函數(shù)圖像教學(xué)反思 《二次函數(shù)y=ax2的圖像》教學(xué)反思 教師的任務(wù)不僅在于教數(shù)學(xué),更主要的是創(chuàng)設(shè)情境,激勵學(xué)生憑借自己的能力去獲取數(shù)學(xué)知識,理解數(shù)學(xué)的道理,,在教學(xué)中,我們應(yīng)鼓勵學(xué)生通...
2024-10-24 19:48
【總結(jié)】二次函數(shù)的圖像與性質(zhì)(一)第二十四講,求二次函數(shù)的解析式:⑴已知拋物線的頂點(diǎn)坐標(biāo)為(-1,-2),且通過點(diǎn)(1,10).⑵已知拋物線經(jīng)過(2,0),(0,-2),(-2,3)三點(diǎn).⑶已知拋物線與x軸交點(diǎn)的橫坐標(biāo)為-2和1,且通過點(diǎn)(2,8).Oy-11x2、已知二次函數(shù)y=
2024-11-19 08:00
【總結(jié)】二次函數(shù)的圖象和性質(zhì)二次函數(shù)y=a(x-h)的圖象和性質(zhì)(2)倍速課時學(xué)練探究畫出二次函數(shù)的圖象,并考慮它們的開口方向、對稱軸和頂點(diǎn).x·&
【總結(jié)】......二次函數(shù)的圖象與基本性質(zhì)(一)、知識點(diǎn)回顧【知識點(diǎn)一:二次函數(shù)的基本性質(zhì)】y=ax2y=ax2+ky=a(x-h(huán))2y=a(x-h(huán))2+ky=ax2+bx+c開口方向頂點(diǎn)
2025-06-23 21:41
【總結(jié)】 《二次函數(shù)圖像的性質(zhì)》聽課反思 預(yù)備鈴響之前我到達(dá)了十二班,劉瓊老師正在黑板上畫直角坐標(biāo)系,學(xué)生在預(yù)習(xí),班里整體上處于上課的狀態(tài)...... 首先出示了學(xué)習(xí)目標(biāo):=x2的圖像是一...
2025-04-03 05:08
【總結(jié)】y=x2+c的圖象是什么?答:是拋物線?請?zhí)顚懴卤恚汉瘮?shù)開口方向?qū)ΨQ軸頂點(diǎn)坐標(biāo)Y的最值增減性在對稱軸左側(cè)在對稱軸右側(cè)y=ax2a>0a<0y=ax2+ca>0a<0向上Y軸(0,0)最小值是0Y隨x的增大而減小Y隨x的增
2024-11-21 00:15
【總結(jié)】二次函數(shù)y=a(x-h)2+k的圖象及其性質(zhì)1說出下列函數(shù)圖象的開口方向,對稱軸,頂點(diǎn),最值和增減變化情況:1)y=ax22)y=ax2+c3)y=a(x-h)2將拋物線y=ax2沿y軸方向平移c個單位,得拋物線
2024-11-21 02:34
【總結(jié)】二次函數(shù)的圖像與性質(zhì)一、二次函數(shù)的基本形式1.二次函數(shù)基本形式:的性質(zhì):a的絕對值越大,拋物線的開口越小。的符號開口方向頂點(diǎn)坐標(biāo)對稱軸性質(zhì)向上軸時,隨的增大而增大;時,隨的增大而減??;時,有最小值.向下軸時,隨的增大而減?。粫r,隨的增大而增大;時,有最大值.2.的性質(zhì):上加下減
2025-06-16 00:11
【總結(jié)】二次函數(shù)??khxay???2的圖象(一)【學(xué)習(xí)目標(biāo)】1.知道二次函數(shù)kaxy??2與2axy?的聯(lián)系.kaxy??2的性質(zhì),并會應(yīng)用;【學(xué)法指導(dǎo)】類比一次函數(shù)的平移和二次函數(shù)2axy?的性質(zhì)學(xué)習(xí),要構(gòu)建一個知識體系。【學(xué)習(xí)過程】一、知識鏈接:直線12??xy可以看做是由直線xy2?
2024-11-22 03:15
【總結(jié)】-22-2-4-64-4二次函數(shù)y=a(x-h)2的圖象復(fù)習(xí)二次函數(shù)y=ax2和y=ax2+k的圖象是一條拋物線。y=ax2和y=ax2+k的圖象是什么形狀?y=ax2的性質(zhì)是什么?向上對稱軸頂點(diǎn)坐標(biāo)對稱軸左側(cè)y隨x增大
【總結(jié)】課程標(biāo)準(zhǔn)浙教版實驗教科書九年級上冊知識回顧:時,圖象將發(fā)生怎樣的變化?二次函數(shù)y=ax2y=a(x+m)2y=a(x+m)2+k1、頂點(diǎn)坐標(biāo)?(0,0)(–m,0)(–m,k)2、對稱軸?y軸(直線x=0)(直線x=–m)(直線x=–m)
2024-12-08 13:29