【總結(jié)】......圓錐曲線一、橢圓:(1)橢圓的定義:平面內(nèi)與兩個定點的距離的和等于常數(shù)(大于)的點的軌跡。其中:兩個定點叫做橢圓的焦點,焦點間的距離叫做焦距。注意:表示橢圓;表示線段;沒有軌跡;(2)橢圓的標(biāo)準(zhǔn)方程、
2025-06-19 00:18
【總結(jié)】1、直線和圓錐曲線位置關(guān)系(1)位置關(guān)系判斷:△法(△適用對象是二次方程,二次項系數(shù)不為0)。其中直線和曲線只有一個公共點,包括直線和雙曲線相切及直線與雙曲線漸近線平行兩種情形;后一種情形下,消元后關(guān)于x或y方程的二次項系數(shù)為0。直線和拋物線只有一個公共點包括直線和拋物線相切及直線與拋物線對稱軸平行等兩種情況;后一種情形下,消元后關(guān)于x或y方程的二次項系數(shù)為0。(2)直線和
2025-07-22 17:02
【總結(jié)】一、單選題(每題6分共36分)1.橢圓的焦距為。()A.5B.3C.4D82.已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線的方程為()A.B.
2025-06-23 07:22
【總結(jié)】橢圓必背的經(jīng)典結(jié)論1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相離.4.以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.5.若在橢圓上,則過的橢圓的切線方程是.6.若在橢圓外,則過Po作橢圓的兩
2025-06-24 04:00
【總結(jié)】曲線方程及圓錐曲線典型例題解析一.知識要點1.曲線方程(1)求曲線(圖形)方程的方法及其具體步驟如下:步驟含義說明1、“建”:建立坐標(biāo)系;“設(shè)”:設(shè)動點坐標(biāo)。建立適當(dāng)?shù)闹苯亲鴺?biāo)系,用(x,y)表示曲線上任意一點M的坐標(biāo)。(1)所研究的問題已給出坐標(biāo)系,即可直接設(shè)點。(2)沒有給出坐標(biāo)系,首先要選取適當(dāng)?shù)淖鴺?biāo)系。2、現(xiàn)
2025-07-26 09:19
【總結(jié)】WORD資料可編輯圓錐曲線一、橢圓:(1)橢圓的定義:平面內(nèi)與兩個定點的距離的和等于常數(shù)(大于)的點的軌跡。其中:兩個定點叫做橢圓的焦點,焦點間的距離叫做焦距。注意:表示橢圓;表示線段;沒有軌跡;(2)橢圓的標(biāo)準(zhǔn)方程、圖象及幾何性質(zhì):中心在原點,焦點
2025-06-19 01:54
【總結(jié)】......中點弦問題專題練習(xí) 一.選擇題(共8小題)1.已知橢圓,以及橢圓內(nèi)一點P(4,2),則以P為中點的弦所在直線的斜率為( ?。.B.C.2D.﹣22.已知A(
2025-03-25 00:04
【總結(jié)】WORD資料可編輯橢圓與雙曲線的對偶性質(zhì)--(必背的經(jīng)典結(jié)論)橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦P
2025-04-17 13:13
【總結(jié)】......圓錐曲線32題1.如圖所示,,分別為橢圓:()的左、右兩個焦點,,為兩個頂點,已知橢圓上的點到,兩點的距離之和為. (1)求橢圓的方程;(2)過橢圓的焦點作的平行線交
2025-03-24 04:35
【總結(jié)】第九節(jié)圓錐曲線的綜合問題(理)抓基礎(chǔ)明考向提能力教你一招我來演練第八章平面解析幾何返回返回[備考方向要明了]考什么、拋物線的位置關(guān)系的思想方法.、定值、參數(shù)范圍等問題.
2025-08-05 03:29
【總結(jié)】圓錐曲線橢圓專項訓(xùn)練【例題精選】:例1求下列橢圓的標(biāo)準(zhǔn)方程: (1)與橢圓有相同焦點,過點; (2)一個焦點為(0,1)長軸和短軸的長度之比為t; (3)兩焦點與短軸一個端點為正三角形的頂點,焦點到橢圓的最短距離為。 (4) 例2已知橢圓的焦點為。 (1)求橢圓的標(biāo)準(zhǔn)方程; (2)設(shè)點P在這個橢圓上,且,求:的值
2025-06-22 14:59
【總結(jié)】大慶目標(biāo)教育圓錐曲線一、知識結(jié)構(gòu)在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標(biāo)都是這個方程的解;(2);這條曲線叫做方程的曲線.點與曲線的關(guān)系若曲線C的方程是f(x,y)=0,則點P0(x0,y0)在曲線C上f(x0,y0)=0;點P0(x0,y0)
2025-08-04 14:02
【總結(jié)】(2,0),右頂點為(1)求雙曲線C的方程;(2)若直線與雙曲線C恒有兩個不同的交點A和B,且(其中O為原點).求k的取值范圍.解:(Ⅰ)設(shè)雙曲線方程為由已知得故雙曲線C的方程為(Ⅱ)將由直線l與雙曲線交于不同的兩點得即①設(shè),則而于是②由①、②得故k的取值范圍為2..已知橢圓C:+=
2025-06-22 15:52
【總結(jié)】圓錐曲線一、填空題1、對于曲線C∶=1,給出下面四個命題:①由線C不可能表示橢圓;②當(dāng)1<k<4時,曲線C表示橢圓;③若曲線C表示雙曲線,則k<1或k>4;④若曲線C表示焦點在x軸上的橢圓,則1<k<其中所有正確命題的序號為_____________.2、已知橢圓的兩個焦點分別為,點P在橢圓上,且滿足,,則該橢圓的離心率為,點在雙曲線上,則點到該雙
2025-06-24 02:10
【總結(jié)】圓錐曲線設(shè)而不求法典型試題在求解直線與圓錐曲線相交問題,特別是涉及到相交弦問題,最值問題,定值問題的時候,采用“設(shè)點代入”(即“設(shè)而不求”)法可以避免求交點坐標(biāo)所帶來的繁瑣計算,同時還要與韋達定理,中點公式結(jié)合起來,使得對問題的處理變得簡單而自然,因而在做圓錐曲線題時注意多加訓(xùn)練與積累.1.通常情況下如果只有一條直線,設(shè)斜率相對容易想一些,或者多條直線但是直線斜率之間存在垂
2025-08-05 04:58