【總結】解直角三角形及其應用第二十八章銳角三角函數(shù)考場對接題型一已知直角三角形中兩邊,解直角三角形例題1在Rt△ABC中,∠C=90°,BC=35,AB=35,解這個直角三角形.解在Rt△ABC中,由勾股定理,得∴∠A=45
2025-06-16 15:28
2025-06-16 13:38
【總結】(2010哈爾濱)在Rt△ABC中,∠C=90°,∠B=35°,AB=7,則BC的長為().C(A)7sin35°(B)(C)7cos35°(D)7tan35°(2010紅河自治州)計算:+2sin60°=(2010紅河自治州)(本小題滿分9分)如圖5,一架飛機
2025-08-04 12:59
2025-08-05 19:13
【總結】第二十八章●第二節(jié)應用丼例九年級|下冊問題引入問題1⑴解直角三角形是指什么?歸納:由直角三角形中除直角外的已知元素,求出其余未知元素的過程,叫做解直角三角形。⑵解直角三角形主要依據(jù)什么?歸納:①勾股定理:;②銳角之間的關系:∠A+∠B=90°;③邊角之
2025-06-15 12:04
【總結】歸納:已知一個銳角,根據(jù)∠A+∠B=90°,可以求另一銳角?!螦=90°-∠B;∠B=90°-∠A;問題一:已知Rt△ABC中,∠C=90°,設∠A的對邊為a,∠B的對邊為b,∠C的對邊為c。ACBab
2024-11-22 01:20
【總結】解直角三角形(2)在直角三角形中,除直角外,由已知兩元素求其余未知元素的過程叫解直角三角形.(1)三邊之間的關系:a2+b2=c2(勾股定理);(2)兩銳角之間的關系:∠A+∠B=90o;(3)邊角之間的關系:ACBabc
2024-11-21 04:10
【總結】在RtΔABC中,若∠C=900,問題1.兩銳角∠A與∠B有什么關系?答:∠A+∠B=900.問題2.三邊a、b、c的關系如何?答:a2+b2=c2.問題3.∠B與邊的關系是
2024-11-10 01:51
【總結】解直角三角形(2)(2)兩銳角之間的關系∠A+∠B=90°(3)邊角之間的關系caAA???斜邊的對邊sincbBB???斜邊的對邊sincbAA???斜邊的鄰邊coscaBB???斜邊的鄰邊cosbaAAA????的鄰邊的對邊t
【總結】 應用舉例(1),視線與水平線的夾角叫做 ,從上往下看,視線與水平線的夾角叫做 .?為測樓房BC的高,在距樓房30m的A處測得樓頂B的仰角為α,則樓房BC的高為 m.?實際問題時,可以直接或通過作輔助線,構造出直角三角形,化歸為解
2025-06-18 05:43
【總結】 應用舉例(2)識解決實際問題的一般過程是:(1)將實際問題抽象為 (畫出平面圖形,轉化為 的問題);?(2)根據(jù)問題中的條件,適當選用銳角三角函數(shù)等 ;?(3)得到 的答案;?(4)得到 的答案.&
2025-06-18 05:25
【總結】28.2解直角三角形第3課時,第一頁,編輯于星期六:七點七分。,1.能應用解直角三角形的知識解決與方位角、坡度有關的實際問題.2.培養(yǎng)學生分析問題、解決問題的能力;滲透數(shù)形結合的數(shù)學思想和方法.,第二...
2024-10-21 21:46
【總結】第二十八章銳角三角函數(shù)解直角三角形及其應用(1)一、新課引入1、在三角形中共有幾個元素?2、直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B這五個元素間有哪些等量關系呢?一般地,直角三角形中,除直角外,共有5個元素,即3條邊和2個銳角(1)三邊之間的關系:a2+b
2025-06-20 00:24
【總結】(A)0°<∠A<30°(B)30°<∠A<90°(C)0°<∠A<60°(D)60°<∠A<901.當∠A為銳角,且tanA的值大于時,∠A()B2.當∠A為銳角,且tanA的值小于時,∠
2024-11-21 00:14
【總結】第二十八章銳角三角函數(shù)解直角三角形及其應用(2)一、新課引入1、直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B這五個元素間有哪些等量關系呢?(1)三邊之間的關系:a2+b2=c2(勾股定理)(2)兩銳角之間的關系:∠A+∠B=90°(3)邊角之間的關系:sin=
2025-06-20 00:22