【總結(jié)】函數(shù)的極值和最值【考綱要求】。.?!局R(shí)網(wǎng)絡(luò)】函數(shù)極值的定義函數(shù)極值點(diǎn)條件函數(shù)的極值求函數(shù)極值函數(shù)的極值和最值函數(shù)在閉區(qū)間上的最大值和最小值【考點(diǎn)梳理】要點(diǎn)一、函數(shù)的極值函數(shù)的極值的定義一般地,設(shè)函數(shù)在點(diǎn)及其附近有定義,(1)若對(duì)于附近的所有點(diǎn),都有,則是函數(shù)的一個(gè)極大值,記作;(2)若對(duì)附近的所有
2025-06-16 04:08
【總結(jié)】導(dǎo)數(shù)單調(diào)性、極值、最值教學(xué)目標(biāo):掌握運(yùn)用導(dǎo)數(shù)求解函數(shù)單調(diào)性的步驟與方法重點(diǎn)難點(diǎn):能夠判定極值點(diǎn),并能求解閉區(qū)間上的最值問(wèn)題利用導(dǎo)數(shù)研究函數(shù)的極值、最值:(1)求導(dǎo)數(shù);(2)解方程;(3)使不等式成立的區(qū)間就是遞增區(qū)間,使成立的區(qū)間就是遞減區(qū)間。,右側(cè)____0,那么是的極大值;如果在根附近的左側(cè)____0,右側(cè)____0,那么是的極小值典型例題:
2025-07-26 05:39
【總結(jié)】題型三極值最值型極大值極小值⑴在包含x0的一個(gè)區(qū)間(a,b)內(nèi),函數(shù)y=f(x)在任何一點(diǎn)的函數(shù)值都小于x0點(diǎn)的函數(shù)值,稱點(diǎn)x0為函數(shù)y=f(x)的極大值點(diǎn),其函數(shù)值f(x0)為函數(shù)的極大值;⑵在包含x0的一個(gè)區(qū)間(a,b)內(nèi),函數(shù)y=f(x)在任何一點(diǎn)的函數(shù)值都大于x0點(diǎn)的函數(shù)值,稱點(diǎn)x0為函數(shù)y=f(x)的極小值點(diǎn),其函數(shù)值f(x0)為函數(shù)的極小值;⑶極大值
2025-07-26 14:27
【總結(jié)】《二次函數(shù)在閉區(qū)間上的最值問(wèn)題》教學(xué)設(shè)計(jì)潼關(guān)中學(xué)郭傳濤1.教材分析二次函數(shù)是高中數(shù)學(xué)的重要內(nèi)容,是在學(xué)習(xí)了《函數(shù)》一節(jié)內(nèi)容之后編排的。通過(guò)本節(jié)課的學(xué)習(xí),既可以對(duì)二次函數(shù)的概念等知識(shí)進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習(xí)其它函數(shù),尤其是利用函數(shù)的圖像來(lái)研究函數(shù)的性質(zhì)打下堅(jiān)實(shí)的基礎(chǔ),而含參數(shù)的二次函數(shù)是進(jìn)入高中以后學(xué)生遇到的新的問(wèn)題,雖然在初中學(xué)生接觸過(guò)二次函數(shù),但是初中的要求比
2025-03-24 06:25
【總結(jié)】函數(shù)的值域與最大(小)值(一)復(fù)習(xí)指導(dǎo)函數(shù)的值域就是全體的函數(shù)值所構(gòu)成的集合,是由其對(duì)應(yīng)法則和定義域共同決定的,在多數(shù)情況下,一旦函數(shù)的定義域和對(duì)應(yīng)法則確定,函數(shù)的值域也就隨之確定了,而函數(shù)的最大(小)值一定是值域內(nèi)最大(小)的一個(gè)函數(shù)值,因此求函數(shù)的值域和求函數(shù)的最大(小)值在方法上是相通的.求函數(shù)的值域要注意優(yōu)先考慮定義域,常用的方法有:(1)觀察法:利用已有的基本函
2025-04-04 05:07
【總結(jié)】第二章第三節(jié)函數(shù)的單調(diào)性與最值一、選擇題1.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是( )A.y=x3 B.y=|x|+1C.y=-x2+1 D.y=2-|x|2.下列函數(shù)f(x)中,滿足“對(duì)任意x1,x2∈(0,+∞),當(dāng)x1f(x2)”的是( )A.f(x)=
2025-03-24 12:17
【總結(jié)】函數(shù)的單調(diào)性與最值一、知識(shí)梳理1.增函數(shù)、減函數(shù)一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮,區(qū)間D?I,如果對(duì)于任意x1,x2∈D,且x1f(x2).2.單調(diào)區(qū)間的定義若函數(shù)y=f(x)在區(qū)間D上是增函數(shù)或減函數(shù),則稱函數(shù)y=
【總結(jié)】第三節(jié)函數(shù)的值域與最值基礎(chǔ)梳理1.函數(shù)的最值一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)锳,(1)如果存在x0∈A,使得對(duì)于任意x∈A,都有________,那么稱f(x0)為y=f(x)的最大值,記為________.(2)如果存在x0∈A,使得對(duì)于任意x∈A,都有________,那么稱f(x0)為y=f(x)
2025-11-03 16:45
【總結(jié)】利用函數(shù)的單調(diào)性(最值)求參數(shù)的取值范圍例1.已知函數(shù)),0()(2Raxxaxxf????,若)(xf在????,2上為增函數(shù),求實(shí)數(shù)a的取值范圍.跟蹤訓(xùn)練:1.已知函數(shù)????????,2),0()(2xaxaxxf上遞增,求實(shí)數(shù)a的取值范圍.2.若函數(shù)xxm
2025-10-31 06:38
【總結(jié)】導(dǎo)數(shù)與單調(diào)性極值最基礎(chǔ)值習(xí)題 一.選擇題1.可導(dǎo)函數(shù)y=f(x)在某一點(diǎn)的導(dǎo)數(shù)值為0是該函數(shù)在這點(diǎn)取極值的( ?。〢.充分條件 B.必要條件C.充要條件 D.必要非充分條件2.函數(shù)y=1+3x﹣x3有( ?。〢.極小值﹣1,極大值3 B.極小值﹣2,極大值3C.極小值﹣1,極大值1 D.極小值﹣2,極大值23.函數(shù)f(x)=x3+ax2﹣3x﹣9,已知f
2025-08-05 05:49
【總結(jié)】精品資源第05講函數(shù)最值的應(yīng)用一、最值綜合與應(yīng)用問(wèn)題:(一)知識(shí)歸納:1.最值綜合問(wèn)題:這是中學(xué)數(shù)學(xué)最重要的題型之一,題型非常廣泛. ①幾何圖形的最值問(wèn)題:在平幾、立幾、解幾圖形中求解面積、體積、距離及各種幾何量的最大、最小值;②代數(shù)中的最值問(wèn)題:求解方程(或不等式)的最大、最小解,數(shù)列的最大、最小項(xiàng),變量或代數(shù)式的最大、最小取值,等等;2.最值應(yīng)用問(wèn)題:這是
2025-06-29 16:24
【總結(jié)】......典型中考題(有關(guān)二次函數(shù)的最值)屠園實(shí)驗(yàn)周前猛一、選擇題1.已知二次函數(shù)y=a(x-1)2++b有最小值–1,則a與b之間的大小關(guān)()A.ab=b
2025-03-24 06:26
【總結(jié)】第五講函數(shù)的定義域與值域(最值)函數(shù)的定義域是指使函數(shù)有意義的____自變量____的取值范圍.注意:(1)確定函數(shù)定義域的原則:①當(dāng)函數(shù)y=f(x)用表格給出時(shí),函數(shù)的定義域是指表格中實(shí)數(shù)x的集合;②當(dāng)函數(shù)y=f(x)用圖象給出時(shí),函數(shù)的定義域是指圖象在x軸上投影所覆蓋的實(shí)數(shù)的集合;③當(dāng)函數(shù)y=f(x)用解析式給出時(shí),函數(shù)的定義域是指使解析式有意義的實(shí)數(shù)的集合;
2025-05-16 01:41
【總結(jié)】....導(dǎo)數(shù)與單調(diào)性極值最基礎(chǔ)值習(xí)題 一.選擇題1.可導(dǎo)函數(shù)y=f(x)在某一點(diǎn)的導(dǎo)數(shù)值為0是該函數(shù)在這點(diǎn)取極值的( ?。〢.充分條件 B.必要條件C.充要條件 D.必要非充分條件2.函數(shù)y=1+3x﹣x3有( )A.極小值﹣1,極大值3 B.極小值﹣2,極
2025-03-25 00:40
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件13《函數(shù)的最值》知識(shí)網(wǎng)絡(luò)最值求解方法最值問(wèn)題常用解法最值綜合問(wèn)題最值應(yīng)用問(wèn)題“恒成立”問(wèn)題“存在”問(wèn)題:配方法,判別式法,代換法,不等式法,單調(diào)性法,數(shù)形結(jié)合法,三角函數(shù)有界法,反函數(shù)法。復(fù)習(xí)導(dǎo)引,
2025-11-02 02:54