【總結】二次函數最值應用題1:(導數)統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時耗油量y(升)關于行駛速度x(千米/小時)的函數解析式可以表示為:,已知甲、乙兩地相距100千米.(1)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?(2)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油量最少?最少為多少升?2:(條件最值)如圖所示,校園內計劃修建一
2025-03-24 06:26
【總結】圓錐曲線的最值、范圍問題與圓錐曲線有關的范圍、最值問題,各種題型都有,既有對圓錐曲線的性質、曲線與方程關系的研究,又對最值范圍問題有所青睞,它能綜合應用函數、三角、不等式等有關知識,緊緊抓住圓錐曲線的定義進行轉化,充分展現數形結合、函數與方程、化歸轉化等數學思想在解題中的應用,本文從下面幾個方面闡述該類題型的求解方法,以引起讀者注意.一、利用圓錐曲線定義求最值借助圓錐曲線定義將
2025-03-25 00:04
【總結】中考壓軸題精選典型例題講解 二次函數——動點產生的線段最值問題【例1】如圖,在直角坐標系中,點A,B,C的坐標分別為(-1,0),(3,0),(0,3),過A,B,C三點的拋物線的對稱軸為直線.(1)求拋物線的解析式及頂點D的坐標;(2)點E是拋物線的對稱軸上的一個動點,求當AE+CE最小時點E的坐標;(3)點P是x軸上的一個動點,求當PD+PC最小時點P的坐標;(4)
2025-03-24 06:23
【總結】二次函數在閉區(qū)間上的最值一、知識要點:一元二次函數的區(qū)間最值問題,核心是函數對稱軸與給定區(qū)間的相對位置關系的討論。一般分為:對稱軸在區(qū)間的左邊,中間,右邊三種情況.設,求在上的最大值與最小值。分析:將配方,得頂點為、對稱軸為當時,它的圖象是開口向上的拋物線,數形結合可得在[m,n]上的最值:(1)當時,的最小值是的最大值是中的較大者。(2)當時若,由在上是增函
2025-05-16 02:58
【總結】......圓錐曲線的最值、范圍問題與圓錐曲線有關的范圍、最值問題,各種題型都有,既有對圓錐曲線的性質、曲線與方程關系的研究,又對最值范圍問題有所青睞,它能綜合應用函數、三角、不等式等有關知識,緊緊抓住圓錐曲線的定義進行轉
【總結】《二次函數在閉區(qū)間上的最值問題》教學設計潼關中學郭傳濤1.教材分析二次函數是高中數學的重要內容,是在學習了《函數》一節(jié)內容之后編排的。通過本節(jié)課的學習,既可以對二次函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習其它函數,尤其是利用函數的圖像來研究函數的性質打下堅實的基礎,而含參數的二次函數是進入高中以后學生遇到的新的問題,雖然在初中學生接觸過二次函數,但是初中的要求比
2025-03-24 06:25
【總結】二次函數與線段和差問題例題精講:如圖拋物線y=ax2+bx+c(a≠0與x軸交于A,B(1,0),與y軸交于點C,直線y=12x-2經過點A,,對稱軸為直線l,(1)求拋物線解析式。(2)求頂點D的坐標與對稱軸l.(3)設點E為x軸上一點,且AE=CE,求點E的坐標。(4)設點G是y軸上的一點,是否存在點G,使得GD+GB的值最小,若存在,求出G點坐標,若不存在,
2025-04-04 03:00
【總結】杭州大石教育暑假班初三數學1/42022年暑期班初三數學第2講二次函數的最值★二次函數y=ax2+bx+c頂點坐標是,對稱軸是,,當a>0
2025-01-07 16:45
【總結】二次函數在閉區(qū)間上的最值石家莊市42中學于祝高中數學例1、已知函數f(x)=x2–2x–3.(1)若x∈[–2,0],求函數f(x)的最值;10xy–23例1、已知函數f(x)=x2–2x–3.(1)若x∈[–2,0],求
2024-10-17 04:08
【總結】.專題14圓錐曲線中的最值和范圍問題★★★高考在考什么【考題回放】1.已知雙曲線(a0,b0)的右焦點為F,若過點F且傾斜角為60°的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是(C)A.(1,2)B.(1,2)C.
2025-07-25 00:14
【總結】......(差)的最值問題【知識依據】1.線段公理——兩點之間,線段最短;2.對稱的性質——①關于一條直線對稱的兩個圖形全等;②對稱軸是兩個對稱圖形對應點連線的垂直平分線;3.三角形兩邊之和大于第三邊;
2025-03-25 07:09
【總結】函數的極值和最值【考綱要求】。.?!局R網絡】函數極值的定義函數極值點條件函數的極值求函數極值函數的極值和最值函數在閉區(qū)間上的最大值和最小值【考點梳理】要點一、函數的極值函數的極值的定義一般地,設函數在點及其附近有定義,(1)若對于附近的所有點,都有,則是函數的一個極大值,記作;(2)若對附近的所有
2025-06-16 04:08
【總結】深圳實驗培訓中心2009年暑期初二培訓資料姓名月日第4課時二次函數的實際應用——面積最大(小)值問題知識要點:在生活實踐中,人們經常面對帶有“最”字的問題,如在一定的方案中,花費最少、消耗最低、面積最大、產值最高、獲利最多等;解數學題時,我們也常常碰到求某個變量的最大值或最小值之類的問題,這就
2025-03-25 06:48
【總結】有限區(qū)間上含參數的二次函數的最值問題執(zhí)教:吳雄華時間:2020-9班級:高三(1)班教學目標:知識與技能:1.掌握定義在變化區(qū)間上的一元二次函數最值的求解方法;2.掌握系數含參數的一元二次函數在定區(qū)間上最值的求解方法;過程與方法:3.加深學生運
2024-11-03 00:07
【總結】1《探究二次函數在閉區(qū)間上的最值》教案教學目標:初步掌握解決二次函數在閉區(qū)間上最值問題的一般解法,總結歸納出二次函數在閉區(qū)間上最值的一般規(guī)律,會運用二次函數在閉區(qū)間上的圖像研究相關問題。:通過實驗,觀察影響二次函數在閉區(qū)間上的最值的因素,在此基礎上討論探究出解決二次函數在閉區(qū)間上最值問題的一般解法和規(guī)律。、態(tài)度與價值觀:
2024-11-21 23:43