freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

各地中考數(shù)學(xué)解析版試卷分類匯編(第期)動(dòng)態(tài)問題-文庫吧

2024-12-31 07:28 本頁面


【正文】 C2故答案為:10.3.(2016黑龍江龍東3分)如圖,MN是⊙O的直徑,MN=4,∠AMN=40176。,點(diǎn)B為弧AN的中點(diǎn),點(diǎn)P是直徑MN上的一個(gè)動(dòng)點(diǎn),則PA+PB的最小值為 2?。究键c(diǎn)】軸對(duì)稱最短路線問題;圓周角定理.【分析】過A作關(guān)于直線MN的對(duì)稱點(diǎn)A′,連接A′B,由軸對(duì)稱的性質(zhì)可知A′B即為PA+PB的最小值,由對(duì)稱的性質(zhì)可知=,再由圓周角定理可求出∠A′ON的度數(shù),再由勾股定理即可求解.【解答】解:過A作關(guān)于直線MN的對(duì)稱點(diǎn)A′,連接A′B,由軸對(duì)稱的性質(zhì)可知A′B即為PA+PB的最小值,連接OB,OA′,AA′,∵AA′關(guān)于直線MN對(duì)稱,∴=,∵∠AMN=40176。,∴∠A′ON=80176。,∠BON=40176。,∴∠A′OB=120176。,過O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2.故答案為:2.1.(2016四川攀枝花)如圖,在△AOB中,∠AOB為直角,OA=6,OB=8,半徑為2的動(dòng)圓圓心Q從點(diǎn)O出發(fā),沿著OA方向以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著AB方向也以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5)以P為圓心,PA長為半徑的⊙P與AB、OA的另一個(gè)交點(diǎn)分別為C、D,連結(jié)CD、QC.(1)當(dāng)t為何值時(shí),點(diǎn)Q與點(diǎn)D重合?(2)當(dāng)⊙Q經(jīng)過點(diǎn)A時(shí),求⊙P被OB截得的弦長.(3)若⊙P與線段QC只有一個(gè)公共點(diǎn),求t的取值范圍.【考點(diǎn)】圓的綜合題.【分析】(1)由題意知CD⊥OA,所以△ACD∽△ABO,利用對(duì)應(yīng)邊的比求出AD的長度,若Q與D重合時(shí),則,AD+OQ=OA,列出方程即可求出t的值;(2)由于0<t≤5,當(dāng)Q經(jīng)過A點(diǎn)時(shí),OQ=4,此時(shí)用時(shí)為4s,過點(diǎn)P作PE⊥OB于點(diǎn)E,利用垂徑定理即可求出⊙P被OB截得的弦長;(3)若⊙P與線段QC只有一個(gè)公共點(diǎn),分以下兩種情況,①當(dāng)QC與⊙P相切時(shí),計(jì)算出此時(shí)的時(shí)間;②當(dāng)Q與D重合時(shí),計(jì)算出此時(shí)的時(shí)間;由以上兩種情況即可得出t的取值范圍.【解答】解:(1)∵OA=6,OB=8,∴由勾股定理可求得:AB=10,由題意知:OQ=AP=t,∴AC=2t,∵AC是⊙P的直徑,∴∠CDA=90176。,∴CD∥OB,∴△ACD∽△ABO,∴,∴AD=,當(dāng)Q與D重合時(shí),AD+OQ=OA,∴+t=6,∴t=;(2)當(dāng)⊙Q經(jīng)過A點(diǎn)時(shí),如圖1,OQ=OA﹣QA=4,∴t==4s,∴PA=4,∴BP=AB﹣PA=6,過點(diǎn)P作PE⊥OB于點(diǎn)E,⊙P與OB相交于點(diǎn)F、G,連接PF,∴PE∥OA,∴△PEB∽△AOB,∴,∴PE=,∴由勾股定理可求得:EF=,由垂徑定理可求知:FG=2EF=;(3)當(dāng)QC與⊙P相切時(shí),如圖2,此時(shí)∠QCA=90176。,∵OQ=AP=t,∴AQ=6﹣t,AC=2t,∵∠A=∠A,∠QCA=∠ABO,∴△AQC∽△ABO,∴,∴,∴t=,∴當(dāng)0<t≤時(shí),⊙P與QC只有一個(gè)交點(diǎn),當(dāng)QC⊥OA時(shí),此時(shí)Q與D重合,由(1)可知:t=,∴當(dāng)<t≤5時(shí),⊙P與QC只有一個(gè)交點(diǎn),綜上所述,當(dāng),⊙P與QC只有一個(gè)交點(diǎn),t的取值范圍為:0<t≤或<t≤5.【點(diǎn)評(píng)】本題考查圓的綜合問題,涉及圓的切線判定,圓周角定理,相似三角形的判定與性質(zhì),學(xué)生需要根據(jù)題意畫出相應(yīng)的圖形來分析,并且能綜合運(yùn)用所學(xué)知識(shí)進(jìn)行解答.2.(2016四川攀枝花)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),B點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3)(1)求拋物線的解析式;(2)點(diǎn)P在拋物線位于第四象限的部分上運(yùn)動(dòng),當(dāng)四邊形ABPC的面積最大時(shí),求點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.(3)直線l經(jīng)過A、C兩點(diǎn),點(diǎn)Q在拋物線位于y軸左側(cè)的部分上運(yùn)動(dòng),直線m經(jīng)過點(diǎn)B和點(diǎn)Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請(qǐng)說明理由.【考點(diǎn)】二次函數(shù)綜合題.【分析】(1)由B、C兩點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線的解析式;(2)連接BC,則△ABC的面積是不變的,過P作PM∥y軸,交BC于點(diǎn)M,設(shè)出P點(diǎn)坐標(biāo),可表示出PM的長,可知當(dāng)PM取最大值時(shí)△PBC的面積最大,利用二次函數(shù)的性質(zhì)可求得P點(diǎn)的坐標(biāo)及四邊形ABPC的最大面積;(3)設(shè)直線m與y軸交于點(diǎn)N,交直線l于點(diǎn)G,由于∠AGP=∠GNC+∠GCN,所以當(dāng)△AGB和△NGC相似時(shí),必有∠AGB=∠CGB=90176。,則可證得△AOC≌△NOB,可求得ON的長,可求出N點(diǎn)坐標(biāo),利用B、N兩的點(diǎn)坐標(biāo)可求得直線m的解析式.【解答】解:(1)把B、C兩點(diǎn)坐標(biāo)代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣2x﹣3;(2)如圖1,連接BC,過Py軸的平行線,交BC于點(diǎn)M,交x軸于點(diǎn)H,在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,∴A點(diǎn)坐標(biāo)為(﹣1,0),∴AB=3﹣(﹣1)=4,且OC=3,∴S
點(diǎn)擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1