freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

勾股定理的證明及應(yīng)用(已改無錯(cuò)字)

2024-11-04 17 本頁面
  

【正文】 010的正方形網(wǎng)格中,點(diǎn)A(0,0)、B(5,0)、C(3,6)、D(-1,3),①依次連結(jié)A、B、C、D四點(diǎn)得到四邊形ABCD,四邊形ABCD的形狀是;②在x軸上找一點(diǎn)P,使得△PCD的周長(zhǎng)最短(直接畫出圖形,不要求寫作法);此時(shí),點(diǎn)P的坐標(biāo)為,最短周長(zhǎng)為; ,E 為AD邊上一點(diǎn),F(xiàn)為CD邊上一點(diǎn),∠FEA=∠EBC,若AE= kED, 探究DF與CF的數(shù)量關(guān)系; 等腰直角 △ABC,將 等腰直角△DMN如圖 放置,△DMN的斜邊MN與△ABC的一直角邊AC重合.⑴ 在圖1中,繞點(diǎn) D旋轉(zhuǎn)△DMN,使兩直角邊DM、DN分別與 交于點(diǎn)E,F(xiàn)如圖2,求證:AE2+BF2=EF2 ;⑵ 在圖1 中,繞點(diǎn) C旋轉(zhuǎn)△DMN,使它的斜邊CM、直角邊 CD的延長(zhǎng)線分別與 AB交于點(diǎn)E,F(xiàn),如圖3,此時(shí)結(jié)論AE2+BF2=EF2是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由.⑶ 如圖4,在正方形 ABCD中,E、F 分別是邊BC、CD 上的點(diǎn)且滿足△CEF 的周長(zhǎng)等于正方形ABCD 的周長(zhǎng)的一半,AE、AF 分別與對(duì)角線 BD交于點(diǎn)M、MN、DN 、MN、DN 所構(gòu)成的三角形的形狀,并給出證明;(AB<BC)的對(duì)角線的交點(diǎn)O旋轉(zhuǎn)(如圖①②③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CD、BC的交點(diǎn),⑴如圖①三角板一直角邊與OD重合,則線段BN、CD、CN間的數(shù)量關(guān)系為;⑵如圖②三角板一直角邊與OC重合,則線段BN、CD、CN間的數(shù)量關(guān)系為;⑶如圖③,探究線段BN、CN、CM、DM間的數(shù)量關(guān)系,寫出你的結(jié)論,加以說明;④若將矩形ABCD改為邊長(zhǎng)為1的正方形ABCD,直角三角板的直角頂點(diǎn)繞O點(diǎn)旋轉(zhuǎn)到圖④,兩直角邊與AB、BC分別交于M、N,探究線段BN、CN、CM、DM間的數(shù)量關(guān)系,寫出你的結(jié)論,加以說明;,四邊形ABCD, AD∥BC,AD≠BC,∠B=90176。,AD=AB ,點(diǎn)E是AB邊上一動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),連結(jié)ED,過ED的中點(diǎn)F作ED的垂線,交AD于點(diǎn)G,交BC于點(diǎn)K,過點(diǎn)K作KM⊥AD于M.若AB=k AE , 探究DM與DG 的數(shù)量關(guān)系;(用含 的式子表示).第四篇:勾股定理證明勾股定理證明直角三角形的兩直角邊的平方和等于斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達(dá)哥拉斯定理或畢氏定理中國(guó)是發(fā)現(xiàn)和研究勾股定理最古老的國(guó)家之一。中國(guó)古代數(shù)學(xué)家稱直角三角形為勾股形,較短的直角邊稱為勾,另一直角邊稱為股,斜邊稱為弦,所以勾股定理也稱為勾股弦定理。在公元前1000多年,據(jù)記載,商高(約公元前1120年)答周公曰“故折矩,以為句廣三,股修四,徑隅五。既方之,外半其一矩,環(huán)而共盤,得成三四五。兩矩共長(zhǎng)二十有五,是謂積矩。”因此,勾股定理在中國(guó)又稱“商高定理”。在公元前7至6世紀(jì)一中國(guó)學(xué)者陳子,曾經(jīng)給出過任意直角三角形的三邊關(guān)系即“以日下為勾,日高為股,勾、股各乘并開方除之得邪至日。以下即為一種證明方法:如圖,這個(gè)直角梯形是由2個(gè)直角邊分別為、斜邊為 的直角三角形和1個(gè)直角邊為的等腰直角三角形拼成的?!摺鰽BE+△AED+△CED=梯形ABCD∴(ab+ab+c178。)247。2=(a+b)(a+b)/2 ∴∴c178。=a178。+b178。,即在直角三角形中,斜邊長(zhǎng)的平方等于兩直角邊的平方和初二十四班秦煜暄第五篇:證明勾股定理勾股定理的應(yīng)用一、引言七年級(jí)上冊(cè)的數(shù)學(xué)有講到
點(diǎn)擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1