【總結(jié)】3.2點、直線與圓的位置關(guān)系,圓的切線3.2.1點、直線與圓的位置關(guān)系,第一頁,編輯于星期六:七點分。,1.掌握點與圓的位置關(guān)系.2.理解直線與圓有三種位置關(guān)系,并能利用公共點的個數(shù)、圓心到直線的距離...
2024-10-25 02:21
【總結(jié)】九年級(下冊)初中數(shù)學學習目的掌握切線的性質(zhì)定理及其推論,并能運用它們解決有關(guān)問題.問題:⒈前面我們已學過的切線的性質(zhì)有哪些?答:①切線和圓有且只有一個公共點;②切線和圓心的距離等于半徑.⒉切線還有什么性質(zhì)?觀察右圖:如果直線AT是⊙O的切線,A為切點,
2025-06-16 17:35
【總結(jié)】九年級(下冊)初中數(shù)學直線和圓相切dr;dr;直線和圓相交直線和圓相離dr;直線與圓的位置關(guān)系量化●O●O相交●O相切相離rrr┐dd┐d┐復習回顧3、觀察與發(fā)現(xiàn)圖中直線l
2025-06-16 17:41
【總結(jié)】湘教版九年級下冊第二章切線的判定定理?定理經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線.?老師提示:?切線的判定定理是證明一條直線是否是圓的切線的根據(jù);作過切點的半徑是常用經(jīng)驗輔助線之一.議一議CDB●OA?如圖?∵OA是⊙O的半徑,直線CD經(jīng)過A
2024-11-25 21:58
【總結(jié)】2.直線與圓的位置關(guān)系,第一頁,編輯于星期六:六點五十一分。,1.直線與圓的位置關(guān)系有哪幾種?答:直線與圓有_____位置關(guān)系:_____、_____和_____.,三種,相交,相切,相離,第二頁,編...
2024-10-21 21:31
【總結(jié)】圓的切線第2章圓第2課時切線的性質(zhì)知識目標目標突破第2章圓總結(jié)反思知識目標1.通過回顧互逆命題和反證法,探索圓的切線的性質(zhì)定理.2.通過對切線的性質(zhì)的了解,能運用切線的性質(zhì)進行計算或證明.第2課時切線的性質(zhì)目標突破
2025-06-14 22:11
【總結(jié)】圓的切線第2章圓第1課時切線的判定知識目標目標突破第2章圓總結(jié)反思知識目標1.通過回顧圓的切線的概念和直線與圓的位置關(guān)系,理解切線的判定定理.2.通過切線的判定定理,掌握圓的切線的作法.第1課時切線的判定目標突破
2025-06-20 00:38
【總結(jié)】精彩練習九年級數(shù)學第二章直線與圓的位置關(guān)系直線與圓的位置關(guān)系(2)練就好基礎(chǔ)更上一層樓開拓新思路ABC練就好基礎(chǔ)A1.下列直線是圓的切線的是()A.與圓有公共點的直線B.到圓心的距離等于半徑的直線C.垂直于圓的半徑的直線D
2025-06-14 04:39
【總結(jié)】如果用小圓代表你們學到的知識,用大圓代表我學到的知識,那么大圓的面積是多一點,但兩圓之外的空白都是我們的無知面.圓越大其圓周接觸的無知面就多.——古希臘芝諾直線與圓的位置關(guān)系:0dr1d=r切點切線
2024-11-17 13:33
2025-06-20 00:53
【總結(jié)】三角形的內(nèi)切圓第2章圓三角形的內(nèi)切圓知識目標目標突破第2章圓總結(jié)反思知識目標1.經(jīng)過觀察、討論、猜想教材“議一議”與“動腦筋”,理解三角形的內(nèi)切圓的概念及其作法.2.結(jié)合方程思想,會求直角三角形內(nèi)切圓的半徑.三角形的內(nèi)切圓
2025-06-13 12:13
2025-06-13 12:12
【總結(jié)】直線與圓的位置關(guān)系學習目標1.理解并掌握切線的判定方法;2.探索切線的判定定理,運用切線的判定方法解決有關(guān)問題.;3重點難點預測重點切線的判定方法、切線的性質(zhì)的運用難點對用“反證法”推理切線性質(zhì)的理解.學生活動過程教師導學過程一、自主預習(獨學)任務(wù)1:如
2024-12-09 13:16
【總結(jié)】 《直線和圓的位置關(guān)系》 今天我說課的內(nèi)容是湘教版九年級下冊《直線和圓的位置關(guān)系》(第一課時).下面我從教材分析、教學方法和手段、教學過程的設(shè)計、版...
2025-04-03 03:33
【總結(jié)】義務(wù)教育教科書(滬科)九年級數(shù)學下冊第24章圓切線的判定方法有三種:①直線與圓有唯一公共點;②直線到圓心的距離等于該圓的半徑;③切線的判定定理.即經(jīng)過半徑的外端并且垂直這條半徑的直線是圓的切線判定直線與圓相切有哪些方法?如圖,紙上有一⊙O,PA為⊙O的一條切線,沿著直線
2024-11-19 02:34