【總結(jié)】講練學(xué)案部分§空間向量及其加減運(yùn)算.知識點(diǎn)一空間向量的概念判斷下列命題是否正確,若不正確,請簡述理由.①向量AB與AC是共線向量,則A、B、C、D四點(diǎn)必在一條直線上;②②單位向量都相等;③任一向量與它的相反向量不相等;④四邊形ABCD是平行四邊形
2024-12-08 01:49
【總結(jié)】復(fù)習(xí)回顧:平面向量1、定義:既有大小又有方向的量。幾何表示法:用有向線段表示字母表示法:用小寫字母表示,或者用表示向量的有向線段的起點(diǎn)和終點(diǎn)字母表示。相等向量:長度相等且方向相同的向量ABCD2、平面向量的加法、減法與數(shù)乘運(yùn)算向量加法的三角形法則ab向量加法的平行四邊形法
2024-11-09 01:24
【總結(jié)】空間向量的坐標(biāo)運(yùn)算——空間直角坐標(biāo)系.空間向量的直角坐標(biāo)運(yùn)算.單位正交基底,空間直角坐標(biāo)系,向量的坐標(biāo)xyzO(x,y,z)ijkPP’OP=OP’+P’P=Xi+yj+zk啟示:空間向量OP=(x,y,z)Xiyjzk則),(2211
2025-08-16 01:22
【總結(jié)】空間向量的坐標(biāo)一向量在軸上的投影與投影定理二向量在坐標(biāo)軸上的分量與向量的坐標(biāo)三向量的模與方向余弦的坐標(biāo)表示式一、向量在軸上的投影與投影定理.上的有向線段是軸,設(shè)有一軸uABuuAB.ABABABuuABuABAB==llllll,即的值,
2024-11-17 23:31
【總結(jié)】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2024-11-12 17:25
【總結(jié)】第二章§2理解教材新知把握熱點(diǎn)考向應(yīng)用創(chuàng)新演練知識點(diǎn)一知識點(diǎn)二考點(diǎn)一考點(diǎn)二考點(diǎn)三知識點(diǎn)三在射擊時,為保證準(zhǔn)確命中目標(biāo),要考慮風(fēng)速、溫度等因素.其中風(fēng)速對射擊的精準(zhǔn)度影響最大.如某人向正北100m遠(yuǎn)處的目標(biāo)射擊,風(fēng)速為西風(fēng)1m/s.
2024-11-17 19:02
【總結(jié)】課題.3空間向量運(yùn)算的坐標(biāo)表示學(xué)習(xí)目標(biāo):知識與技能掌握空間向量加法、減法、數(shù)乘、數(shù)量積運(yùn)算的坐標(biāo)表示以及向量的長度、夾角公式的坐標(biāo)表示,并能初步應(yīng)用這些知識解決簡單的立體幾何問題.過程與方法①通過將空間向量運(yùn)算與熟悉的平面向量的運(yùn)算進(jìn)行類比,使學(xué)生掌握空間向量運(yùn)算的坐標(biāo)表示,滲透類比的數(shù)學(xué)方法;
2024-12-03 00:16
【總結(jié)】空間向量運(yùn)算的坐標(biāo)表示【學(xué)習(xí)目標(biāo)】⒈掌握空間向量坐標(biāo)運(yùn)算的規(guī)律;,判斷兩個向量共線或垂直;【自主學(xué)習(xí)】若123(,,)aaaa?,123(,,)bbbb?,則_________??ab,_____________??ab,_____________()??
2024-11-19 23:24
【總結(jié)】平面向量的坐標(biāo)運(yùn)算鄭德松平面向量的坐標(biāo)運(yùn)算霞浦第一中學(xué)1234-1-5-2-3-4xy501234-1-2-3-4o問題:若已知=(1,3),=(5,1),
2024-11-12 16:44
【總結(jié)】空間向量的坐標(biāo)運(yùn)算一.問題情境四.課堂練習(xí)五.小結(jié)作業(yè)二.學(xué)生活動三.?dāng)?shù)學(xué)應(yīng)用蘇教版選修1-1海安縣實驗中學(xué)高二數(shù)學(xué)備課組1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個單位向量(,)pxy則的坐標(biāo)
2024-11-10 01:37
【總結(jié)】§3.空間向量的數(shù)量積運(yùn)算知識點(diǎn)一求兩向量的數(shù)量積如圖所示,已知正四面體O-ABC的棱長為a,求AB·OC..解由題意知|AB|=|AC|=|AO|=a,且〈AB,AO〉=120AB,CA〉=12
2024-11-20 03:14
【總結(jié)】空間向量的坐標(biāo)運(yùn)算(一)儋州市第一中學(xué)數(shù)學(xué)組吳應(yīng)杰空間向量的基本定理:如果三個向量不共面,那么對空間任一向量,存在一個唯一的有序?qū)崝?shù)組x、y、z,使得:c,b,a???p?czbyaxp?????cba,,叫做空間的一個______基底空間任意三個不共面向
2024-10-17 13:31
【總結(jié)】2020年12月16日星期三學(xué)習(xí)目標(biāo)?1.理解空間向量的概念,掌握空間向量的加法運(yùn)算。?2.用空間向量的運(yùn)算意義和運(yùn)算律解決立幾問題。?重點(diǎn):空間向量的加法、減法運(yùn)算律。?難點(diǎn):用向量解決立幾問題.OABC正東正北向上如圖:已知OA=6米,AB=6米,BC=3米,
2024-11-09 08:04
【總結(jié)】空間向量運(yùn)算的坐標(biāo)表示(二)O?xyz??,,ijk為單位正交基底以建立空間直角坐標(biāo)系O—xyz(,,)xyzpxiyjzk?????,,ijk為基
2024-11-09 03:12
【總結(jié)】1北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2如圖,設(shè)i,j,k是空間三個兩兩垂直的向量,且有公共起點(diǎn)O。對于空間任意一個向量p=OP,設(shè)點(diǎn)Q為點(diǎn)P在i,j所確定的平面上的正投影,由平面基本定理可知,在OQ,k所確定的平面上,存在實數(shù)z,使得OP=OQ
2024-11-18 13:29