【總結(jié)】旋轉(zhuǎn)體就是由一個平面圖形繞這平面內(nèi)一條直線旋轉(zhuǎn)一周而成的立體.這直線叫做旋轉(zhuǎn)軸.圓柱圓錐圓臺二、體積1.旋轉(zhuǎn)體的體積一般地,如果旋轉(zhuǎn)體是由連續(xù)曲線)(xfy?、直線ax?、bx?及x軸所圍成的曲邊梯形繞x軸旋轉(zhuǎn)一周而成的立體,體積為多少?取積分變量為x,],[bax?在],[
2025-04-21 03:33
【總結(jié)】微積分Ⅰ1第九章重積分§二重積分的計算一、利用直角坐標(biāo)計算二重積分二、利用極坐標(biāo)計算二重積分三、小結(jié)微積分Ⅰ2第九章重積分一、利用直角坐標(biāo)計算二重積分bxa??),()(21xyx????)(2xy??abD)(1xy??Dba)(2x
2025-01-19 21:34
【總結(jié)】復(fù)合函數(shù)求導(dǎo)法則例4設(shè)。解
2025-01-15 15:12
【總結(jié)】(一)函數(shù)的極限與連續(xù)一.選擇題1.在其定義域內(nèi)為()(A)無界函數(shù)(B)偶函數(shù)(C)單調(diào)函數(shù)(D)周期函數(shù)2.設(shè)函數(shù),則()(A)它們是完全相同的函數(shù)(B)相同;(C)相同(D)相同。3.設(shè),則()(A)(B)(C)
2025-06-29 13:24
【總結(jié)】問題???dxxex解決思路利用兩個函數(shù)乘積的求導(dǎo)法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvudv????分部積分公式第三節(jié)分部積分法容易計算.例1求積分.
2025-07-22 11:11
【總結(jié)】第二講微積分基本公式?內(nèi)容提要1.變上限的定積分;-萊布尼茲公式。?教學(xué)要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-15 01:35
【總結(jié)】第二章微積分的直接基礎(chǔ)——極限第一節(jié)數(shù)列極限主要內(nèi)容:數(shù)列及數(shù)列極限的概念早在兩千多年前,人們從生活、生產(chǎn)實際中產(chǎn)生了樸素的極限思想,公元前3世紀(jì),我國的莊子就有“一尺之棰,日取其半,萬世不竭”的名言.17世紀(jì)上半葉法國數(shù)學(xué)家笛卡兒(Descartes)創(chuàng)建解析幾何之后,變量就進(jìn)入了數(shù)學(xué).隨之牛頓
2025-01-13 19:09
【總結(jié)】函數(shù)極限的存在準(zhǔn)則學(xué)習(xí)函數(shù)極限的存在準(zhǔn)則之前,我們先來學(xué)習(xí)一下左、右的概念。我們先來看一個例子:例:符號函數(shù)為對于這個分段函數(shù),x從左趨于0和從右趨于0時函數(shù)極限是不相同的.為此我們定義了左、右極限的概念。定義:如果x僅從左側(cè)(x<x0)趨近x0時,函數(shù)與常量A無限接近,則稱A為
2025-08-13 14:26
【總結(jié)】特點:)(0xf?)(0xf??第七節(jié)泰勒公式一、泰勒公式的建立)(xfxy)(xfy?o))(()(000xxxfxf????以直代曲0x)(1xp在微分應(yīng)用中已知近似公式:需要解決的問題如何提高精度?如何估計誤差?xx的一次多項式
2025-08-01 16:25
【總結(jié)】1微積分基本公式問題的提出積分上限函數(shù)及其導(dǎo)數(shù)牛頓—萊布尼茨公式小結(jié)思考題作業(yè)(v(t)和s(t)的關(guān)系)★☆☆fundamentalformulaofcalculus第4章定積分與不定積分2通過定積分的物理意義,例變速直線運動中路
2025-02-21 10:32
【總結(jié)】微積分的名稱?Calculus一詞是源自拉丁文,原意是指石子。因為古歐洲人喜歡用石子來幫助計算,所以calculus被引申作計算的意思。?現(xiàn)時醫(yī)學(xué)上仍用calculus一詞代表石子。例:acalculousman不是指一位精通微積分的人,而是一位患腎結(jié)石的病人!?微積分這個中文詞,最早見諸清代數(shù)學(xué)家李善蘭和英國
2024-09-29 08:13
【總結(jié)】聊聊天微積分的產(chǎn)生——17、18、19世紀(jì)的微積分.很久很久以前,在很遠(yuǎn)很遠(yuǎn)的一塊古老的土地上,有一群智者……開普勒、笛卡爾、卡瓦列里、費馬、帕斯卡、格雷戈里、羅伯瓦爾、惠更斯、巴羅、瓦里斯、牛頓、萊布尼茨、…….任何研究工作的開端,幾乎都是極不完美的嘗試,
2025-08-01 15:02
【總結(jié)】第四節(jié)高階導(dǎo)數(shù)引例:變速直線運動),(tss?)()(tstv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點為函數(shù)則稱存在即處可導(dǎo)在點的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-04-21 04:25
【總結(jié)】第二節(jié)求導(dǎo)法則一、和、差、積、商的求導(dǎo)法則定理并且可導(dǎo)處也在點分母不為零們的和、差、積、商則它處可導(dǎo)在點如果函數(shù),)(,)(),(xxxvxu).0)(()()()()()(])()([)3();()()()(])()([)2();()(])()([)1(2????????????
2025-04-21 03:39
【總結(jié)】一、概念的引入§2.數(shù)列的極限我們在緒論中講到:我們利用階梯形的面積來逼近曲邊三角形的面積(見下頁演示).硯恢陪楔灰橡妒豪棠淪講焰墩爽賭篡愈甸竅包舌客鞠秀萄象限慣矣例班掙微積分86751微積
2025-01-20 05:31