【總結(jié)】第一章勾股定理專題突破一勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級上冊?B類型1利用勾股定理求線段長1.在△ABC中,AB=AC=5,BC=6.若點P在邊AC上移動,求BP最小值是多少?解:過A作AD⊥BC于D,∵AB=AC=5,BC=6
2025-06-21 05:34
【總結(jié)】勾股定理應(yīng)用知識回憶:?cab勾股定理及其數(shù)學(xué)語言表達式:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。222cba??CABcab222cba??在△ABC中,∠C=90°.(1)若b=8,c=10,則a=
2024-12-08 14:07
【總結(jié)】勾股定理的應(yīng)用復(fù)習(xí)回顧情境引入深入探究練習(xí)鞏固課堂小結(jié)1、請敘述出勾股定理的具體內(nèi)容。2、使用勾股定理的條件有哪些?如果直角三角形兩直角邊分別為a、b,斜邊為c,那么222abc??abc直角三角形兩直角邊的平方和等于斜邊的平方。⑴直角三角形⑵已知兩邊或兩邊的關(guān)系
2025-07-18 13:11
【總結(jié)】勾股定理習(xí)題課(一)?勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方.出了勾股定理的證明?答:三國時期的數(shù)學(xué)家趙爽在為《周髀算經(jīng)》作注時給出的.例,為了求出湖兩岸的A、B兩點之間的距離,一個觀察者在點C設(shè)樁,使三角形ABC恰好為直角三角形.通過測量,得到AC長160米,BC長128米,問
2024-11-06 17:01
【總結(jié)】勾股定理的應(yīng)用有一個圓柱,它的高等于12cm,底面圓的周長為A點有一只螞蟻,它想吃到上底面上與A點相對的B點處的食物,需要爬行的最短路程是多少?AB試一試同學(xué)們可自己做一個圓柱,嘗試從A點到B點沿圓柱的側(cè)面畫出幾條路線,你覺得哪條路線最短呢?議一議如圖,將圓
2024-12-07 22:12
【總結(jié)】勾股定理的應(yīng)用欲登12米高的建筑物,為安全需要,需使梯子底端離建筑物5米,至少需多長的梯子?復(fù)習(xí)回顧分析:根據(jù)題意,(如圖)AC是建筑物,則AC=12米,BC=5米,AB是梯子的長度.解:根據(jù)題意,(如圖)AC是建筑物,則AC=12米,BC=5米,AB是梯子的長度.所以在Rt△ABC中,
【總結(jié)】八年級數(shù)學(xué)北師大版·上冊第一章第一章勾股定理勾股定理勾股定理的應(yīng)用如圖所示,有一個圓柱,它的高等于12cm,底面上圓的周長等于18cm.在圓柱下底面的點A有一只螞蟻,它想吃到上底面上與點A相對的點B處的食物,沿圓柱側(cè)面爬行的最短路程是多少?(1)自己做一個圓柱,嘗試從點A到點B沿圓柱側(cè)面畫出幾條路線,你覺得哪條路線最
2025-06-19 12:11
【總結(jié)】勾股定理練習(xí)練習(xí)(1)1、在RtABC中,已知AB=c,AC=b,BC=a,∠B=90°,①已知a=5,b=13,求c②已知a=9,c=12,求b③已知a=7,b=25,求c④已知a=11,c=60,求b練習(xí)(2)2、一個直角三角形
2024-11-06 13:13
【總結(jié)】沙田學(xué)校八(10)中隊c2\a2+b2=c2證明一弦圖?趙爽?東漢末至三國時代吳國人?為《周髀算經(jīng)》作注,並著有《勾股圓方圖說》。美國總統(tǒng)的證明?加菲(JamesA.Garfield;1831?1881)?1881年
【總結(jié)】第一章勾股定理3勾股定理的應(yīng)用3勾股定理的應(yīng)用第一章勾股定理A知識要點分類練B規(guī)律方法綜合練C拓廣探究創(chuàng)新練1.如圖1-3-1,一只螞蟻從一個正方體紙盒的點A沿紙盒表面爬到點B,它所爬過的最短路線的痕跡(虛線)在側(cè)面展開圖中的位置是()
2025-06-20 12:52
2025-06-19 22:19
【總結(jié)】直角三角形的性質(zhì)和判定(Ⅱ)第2課時勾股定理的應(yīng)用第1章直角三角形提示:點擊進入習(xí)題答案顯示6789B45A10A1234BD8012511121314見習(xí)題見習(xí)題見習(xí)題見習(xí)題方程新知筆記9120在應(yīng)用勾股定理解決實際問題時,
2024-12-28 16:17
【總結(jié)】勾股定理的實際應(yīng)用長治十九中初二數(shù)學(xué)教學(xué)目標?會用勾股定理及其逆定理綜合解決簡單的實際問題。?感受由現(xiàn)實例子引出問題,合理構(gòu)建數(shù)學(xué)模型。?學(xué)會開放性地尋求解決方案,培養(yǎng)分析解決問題的能力,體會到用數(shù)學(xué)知識解決實際問題的重要性。學(xué)情分析(1)本次教學(xué)對象是長治十九中初二學(xué)生;(2)學(xué)生能夠基本掌握勾股定理
2024-10-12 10:56
【總結(jié)】勾股定理的應(yīng)用㈠揚中市西來中學(xué)陳永林?直角三角形兩直角邊的平方和等于斜邊的平方.?斜邊是最長邊,肯定是兩個直角邊的平方和等于斜邊的平方南京玄武湖東西隧道與中央路北段及龍蟠路大致成直角三角形,從C處到B處,如果直接走湖底隧道CB,比繞道CA(約)
2025-08-01 16:45
【總結(jié)】勾股定理的綜合應(yīng)用一、知識點聚焦如果直角三角形兩直角邊分別為a,b,斜邊為c,那么勾股定理a2+b2=c2直角三角形兩直角邊的平方和等于斜邊的平方.即課前熱身勾股定理的逆定理如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形直角三角形的判定
2025-07-18 14:19