【總結】知識點8:待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象的位置與a,b,c之間的關系,二次函數(shù)與x軸的交點情況及與一元二次方程根與系數(shù)之間的內在聯(lián)系一、選擇題(),B(),C()為二次函數(shù)的圖象上的三點,則的大小關系是()A. B.C. D.?。憾魏瘮?shù)的圖像為下列圖像之一,則的值為()A.-1
2025-04-04 04:24
【總結】二次函數(shù)圖像信息1.已知二次函數(shù)y=ax2+bx+ca≠0的圖象如圖所示,有下列結論:①b2-4ac0;②abc0;③8a+c0;④9a+3b+c0.其中,正確結論的個數(shù)是?() A.1 B.2 C.3 D.42.二次函數(shù)y=ax2+bx+c的圖象如圖所示,則abc,b2-4ac,a-b-c,b+
【總結】二次函數(shù)1.某商品現(xiàn)在的售價為每件60元,每星期可賣出300件,市場調查反映:每漲價1元,每星期少賣出10件;每降價1元,每星期可多賣出20件,已知商品的進價為每件40元,如何定價才能使利潤最大?2.小華的爸爸在國際商貿城開專賣店專銷某種品牌的計算器,進價12元∕只,售價20元∕只.為了促銷,專賣店決定凡是買10只以上的,每多買一只,(例如:某人買20只計算器
2025-04-07 02:41
【總結】二次函數(shù)動點問題題型Ⅰ因動點而產生的面積問題(2012?張家界)如圖,拋物線y=﹣x2+x+2與x軸交于C、A兩點,與y軸交于點B,OB=2.點O關于直線AB的對稱點為D,E為線段AB的中點.(1)分別求出點A、點B的坐標;(2)求直線AB的解析式;(3)若反比例函數(shù)y=的圖象過點D,求k值;(4)兩動點P、Q同時從點A出發(fā),分別沿AB、AO方向向B、O移動,
【總結】九年級數(shù)學(下)第二章二次函數(shù)6.何時獲得最大利潤(1)二次函數(shù)的應用陽泉市義井中學高鐵牛?請你幫助分析:銷售單價是多少時,可以獲利最多?何時獲得最大利潤?某商店經營T恤衫,已知成批購進時單價是.根據(jù)市場調查,銷售量與銷售單價滿足如下關系:在某一時間內,單價是,銷售量是500件,而單價每降低1
2024-11-06 18:08
【總結】課題:一次函數(shù)與二次函數(shù)的交點及交點的判斷目的:掌握一次函數(shù)與二次函數(shù)的交點坐標的算法會用判別式判斷一次函數(shù)與二次函數(shù)有無交點初步認識函數(shù)圖像中的集合問題重點:一次函數(shù)與二次函數(shù)的交點坐標的計算難點:理解函數(shù)交點坐標的意義課時:一課時過程:引入(1)看函數(shù)圖像通過函數(shù)特點,性質求解析式(2)通過解析式畫函數(shù)圖像通過觀察發(fā)現(xiàn)在同一坐標系
2025-04-04 04:23
【總結】 一.選擇題(共29小題)1.如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結論:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正確結論的選項是( )A.①③ B.①③④ C.②④⑤
2025-04-04 03:01
【總結】石老師精品數(shù)學輔導初三數(shù)學二次函數(shù)專題訓練◆知識講解①一般地,如果y=ax2+bx+c(a,b,c是常數(shù)且a≠0),那么y叫做x的二次函數(shù),它是關于自變量的二次式,二次項系數(shù)必須是非零實數(shù)時才是二次函數(shù),這也是判斷函數(shù)是不是二次函數(shù)的重要依據(jù).②當b=c=0時,二次函數(shù)y=ax2是最簡單的二次函數(shù).③二次函數(shù)
2025-08-05 03:32
【總結】濟學教育 初四?上冊?第二單元?二次函數(shù)-第二課時二次函數(shù)概念及圖象性質知識點一二次函數(shù)的概念一、二次函數(shù)的定義1.一般地,形如(為常數(shù),)的函數(shù)稱為的二次函數(shù),其中為自變量,為因變量,分別為二次函數(shù)的二次項、一次項和常數(shù)項系數(shù).2.任何二次函數(shù)都可以整理成(為常數(shù)
【總結】1九年級數(shù)學《二次函數(shù)》測試卷一.選擇題(每題3分,共30分)1.下列各式中,y是x的二次函數(shù)的是()A.21xyx??B.220xy???C.22yax???D.2210xy???
2025-08-01 19:40
【總結】一切為了孩子美好的未來廈門分校二次函數(shù)知識點一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強調:和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實數(shù).2.二次函數(shù)的結構特征:⑴等號左邊是函數(shù),右邊是關于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項
2025-04-04 04:25
【總結】初中數(shù)學二次函數(shù)復習專題〖知識點〗二次函數(shù)、拋物線的頂點、對稱軸和開口方向〖大綱要求〗1.理解二次函數(shù)的概念;2.會把二次函數(shù)的一般式化為頂點式,確定圖象的頂點坐標、對稱軸和開口方向,會用描點法畫二次函數(shù)的圖象;3.會平移二次函數(shù)y=ax2(a≠0)的圖象得到二次函數(shù)y=a(ax+m)2+k的圖象,了解特殊與一般相互聯(lián)系和轉化的思想;4.會用待定系數(shù)法求二次函數(shù)的
2025-04-16 12:29
【總結】第十四講二次函數(shù)的同象和性質【重點考點例析】考點一:二次函數(shù)圖象上點的坐標特點例1已知二次函數(shù)y=a(x-2)2+c(a>0),當自變量x分別取、3、0時,對應的函數(shù)值分別:y1,y2,y3,,則y1,y2,y3的大小關系正確的是( )A.y3<y2<y1B.y1<y2<y3C.y2<y1<y3D.y3<y1<y2對應訓練1.已知二
【總結】二次函數(shù)零點問題【探究拓展】探究1:設分別是實系數(shù)一元二次方程和的一個根,且求證:方程有且僅有一根介于之間.變式1:已知函數(shù)f(x)=ax2+4x+b(a0,a、b∈R),設關于x的方程f(x)=0的兩實根為x1、x2,方程f(x)=x的兩實根為α、β.(1)若|α-β|=1,求a、b的關系式;(2)若a、b均為負整數(shù)
【總結】二次函數(shù)知識歸納與總結二次函數(shù)的概念和圖像1、二次函數(shù)的概念一般地,如果特,特別注意a不為零那么y叫做x的二次函數(shù)。叫做二次函數(shù)的一般式。2、二次函數(shù)的圖像二次函數(shù)的圖像是一條關于對稱的曲線,這條曲線叫拋物線。拋物線的主要特征:①有開口方向;②有對稱軸;③有頂點。3、二次函數(shù)圖像的畫法五點法:(1)先根據(jù)函數(shù)解析式,求出頂